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Introduction

A good title should be informative enough to illuminate a potential reader
on the content of a book. We hope that the present title gives at least some
hints of what this book is about. The notion of natural deduction or modal
logic are rather well known, but the notion of “hybrid system” certainly
needs some explanation.

In short, this study may be seen as a kind of search for good deductive
systems. We think of systems good in practice which may be applied with
ease not only by well trained logicians but also, for example, by philosophers
who need handy deductive tools accompanying their analyses. In particu-
lar, we are interested in providing systems that may be widely applied in
teaching logic. Nowadays one may observe that several courses in “critical
thinking” tend to eliminate courses in practical logic. On the other hand,
logic is often taught as a strictly mathematical discipline in very demand-
ing courses. It is important to fill the gap between these extrema, and the
crucial ingredient of any course which is supposed to teach how to use logic,
is certainly a suitable deductive system.

Since we address this work to a wide audience interested in applications
of logic, we were trying to make it self-contained and accessible to a reader
with no hard training in logic. The assumed reader should have some back-
ground in logic (an elementary course covering classical propositional and
first-order logic with basics of set theory is enough) but not necessarily in
modal logic.

The search for a good deductive system is realized in stages. Standard
natural deduction for classical and free logic is investigated in the first place
as the proper candidate for this aim. Closer inspection shows that natu-
ral deduction in standard form has some limitations (which should) to be
overcome. In search of better deductive tools we introduce some modified
versions of natural deduction and the so called hybrid systems – combina-
tions of natural deduction with other kinds of calculi. Next, applications of

xi



xii INTRODUCTION

natural deduction in standard and extended (hybrid) form to several modal
logics are analyzed. Finally, a labelled approach is examined: first, in exter-
nal form and then, in the strong internalised form, commonly called hybrid
logics.

If the aim of the study is to find a good deductive system, then we
should ask what does “good” mean with respect to a deductive system?
This is a very general question, concerning a very vague notion that may
cover many different things. We must underline again that we think of
practically usable systems; theoretical considerations often lead to quite
different desiderata. Let us try to make some preliminary list of particularly
important properties.1 A good practical deductive system should be:

• universal

• general

• extensive

• natural

• simple

• efficient

These terms are not technical (except the last perhaps) but informal and
ambiguous. In the following explanations we stipulate meanings which we
want to attribute to them, at least in this book.

We say that a proof system has universal application (or simply that
it is universal) if it may be used to perform different deductive tasks. For
example, a universal system allows not only constructing proofs but also
showing that a formula is invalid by extracting a falsifying model. It makes
possible to define proof search procedures, and even if the formalized logic
is not decidable, it gives some ground for application in automated theorem
proving. Typical tableau and resolution calculi, and to some extent, se-
quent calculi, satisfy this property, whereas axiomatic systems and natural
deduction systems in their standard form, are not universal.

By generality of a system we mean the ability to apply different proof
search strategies and to simulate in a direct fashion other kinds of systems.

1One may find other interesting lists of valuable properties e.g. in Avron [16], Wansing
[280], Indrzejczak [143] or Poggiolesi [214]. But those lists are often more theoretically
oriented and formulated mainly for several forms of sequent calculi, whereas the present
one has a very general character and is more related to practice.
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Several technical notions of simulation will be defined in Chapter 1. In-
formally, we mean that it is possible to apply deductive techniques from
several sources in general systems. In consequence they may be used as a
handy tool for a comparison of different proof-search strategies and their
efficiency.

Extensiveness of a system is connected with the scope of its applicability.
It means that the system provides a uniform deductive framework for the
formalization of several nonclassical logics. Extensive systems yield handy
tools for the investigation of different logics in a uniform fashion. So far,
axiomatic systems are unquestionable winners in this category. But recent
developments of sequent calculi, especially of nonstandard character (like
display calculi or hypersequent calculi), or tableau calculi offer some hope
in this respect.

A proof system is natural if its rules are modeled after traditional meth-
ods of inference, known from antiquity and used by humans in their common
thinking, as well as in informal mathematical proofs. Natural deduction sys-
tems seem to satisfy this requirement better than other systems, because
the latter are often limited to the use of special types of rules only, regulated
rather by theoretical than practical needs. It is not surprising; Jaśkowski
and Gentzen had just this goal in mind when they have constructed the first
systems of this sort. Most variants and modifications introduced later were
also generally connected with this idea.

Naturalness seems to be in close connection with simplicity of the system
but this property is an example of particularly vague notion. Moreover,
several possible senses are hardly subject to any objective criteria. Anyway,
it is worth exploring. In the case of proof systems simplicity means, among
other things:

1. simplicity of inference rules;

2. simplicity of the construction, and the limited number of elements of
the whole system (easy to describe, to implement);

3. easy to follow proofs, readable for humans;

4. ability to construct short and direct proofs;

5. applicability of simple proof search strategies.

It is easy to observe that these features are rather independent and, more-
over, sometimes they even tend to be in conflict. For instance, the possibility
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of building short and direct proofs is usually the result of the rich structure
of the system. On the other hand, systems simple in the sense 1 or 2 are
often unable to produce short and easy-to-follow (and to find) proofs. For
example, axiom systems are certainly simple in the 1st and 2nd sense, which
is the source of their success in metalogic. Axiomatic proofs also have, in a
sense, a very simple structure, but it does not mean that they are readable
or short, or easy to find! Natural deduction systems are usually simple in
the sense 1, 3, and 5, but the price for that is a complex structure of the
calculus. Similar remarks may be applied to other types of proof systems
which will be discussed below.

The notion of efficiency is usually applied on the field of automated
theorem proving and measured in terms of speed of running program or
memory required for computation. But proofs generated by efficient pro-
grams may be quite long and complicated, while it is possible to find short
and direct proofs with the help of some ingenuity. On the other hand, algo-
rithms devised for finding short and readable proofs tend to be rather more
complicated. It means, in terms of implementation, that suitable programs
may require much more time and memory. We are concerned in this study
with systems of practical utility designed for humans not for machines, so
efficiency is a good thing, but not at the expense of other features like nat-
uralness or simplicity. Such an approach does not exclude automatization
but introduces considerable complications because a proof generated by a
program should be readable for men.

Natural Deduction

In general it is not reasonable to claim that some type of a system is better
than other ones. The best we can do is to evaluate systems as better than
others with respect to some of the properties. For example, if we compare
resolution and axiom systems, then certainly, the former is more efficient
but the latter is more extensive. In fact, not all discussed properties may
be used as serious criteria of evaluation. For example, when we compare
different systems with respect to naturalness and simplicity (as explained
above) such an evaluation must be subjective. But still it is reasonable to
search for systems that may be assessed as having sufficiently high rating
in all categories.

In our opinion, natural deduction systems (shortly called ND systems)
seem to be the most promising but their abilities were not fully recognized
so far. In this book we will try to justify our belief and to show that ND
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may be extended and generalized in many ways.
What supports our conviction is, in the first place, the richness of de-

ductive apparatus of ND. It makes even standard ND quite general type of a
system but, as we will show, simple modifications may considerably increase
their generality. We have already mentioned in what sense ND systems may
be called natural and simple. In fact, many existing ND systems may pro-
voke an opinion that they are natural only by definition. We will focus on
the systems which, in our opinion, are the simplest, the most natural, and
moreover, they may be modified in several ways.

In common opinion ND systems are not very useful as a tool for proof
search or for automation. It is a consequence of unnecessary limitation of
standard ND which are defined as systems devised for proof construction
only. In this form they are not universal since realization of other deductive
tasks, like falsification of a formula, is not possible. If it is an essential prop-
erty of ND, it would be more proper to call them “natural proof systems”
instead of “natural deduction”.2 Fortunately, it is not difficult to make ND
systems more universal.

The possibility of using ND systems as, e.g. working decision methods,
opens the gate for the question of efficiency of ND and prospects for au-
tomation. In fact, ND systems are rather not considered as good candidates
for that purpose. Rich deductive toolkit mentioned above may be rather
troublesome for implementation. So it is not surprising that there are not
so many provers based on ND (cf. Chapter 4). The unquestioned leader in
the field is the family of resolution calculi, but programs based on resolution
usually do not satisfy the requirement of readability of the output. Clearly,
if the result (not the way leading to it) was the only important factor, it is
inessential. But we stated above that for us rather the way than the result is
more important, and it is also somewhat connected with automated deduc-
tion. Since 80s, more attention is paid to the construction of several forms
of interactive programs for teaching logic, with some support built in. One
may note that many programs of this sort, like MacLogic, Heterogenous
Logic or Mizar, are based on ND systems.

These brief remarks on some desiderata concerning good proof systems
are intended as an explanation of the leading role of ND systems in this
book. Details that substantiate our claims will be found in the text. We
did not touch so far the question of extensiveness of ND.

2By the way, it is more proper to use a term “automated deduction” instead of often
applied “automated theorem proving” since modern programs are not bound to proving
but realize a variety of deductive tasks, e.g. model checking.
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Modal Logic

In this book we focus only on one class of nonclassical logic, however, very
important one. The choice of modal logics as the field of application of
investigated deductive techniques follows from the personal conviction that
it is one of the most natural and useful class of logics. This view corresponds
well with our program of searching for the most natural, practical and simple
system of deduction. Let us notice however, that although we do not extend
our results to other nonclassical logics, we take the term “modal logics” in
a wider sense than it is usually applied. In particular, we consider:

1. Not only monomodal logics but also multimodal ones, in particular,
bimodal temporal logics.

2. Apart from normal modal logics, also weaker classes of regular, mono-
tonic and congruent logics.

3. Several versions of first-order nonmodal and modal logics.

4. Not only modal logics formulated in standard languages but hybrid
modal logics in extended languages.

We believe that systems providing uniform characterization of this vast and
diversified class of logics are extensive enough. Moreover, many results may
be easily adapted to other nonclassical logics. In case of intuitionistic or
some superintuitionistic logics it is straightforward, e.g. systems for modal
logics of linear frames may be easily redefined to obtain a formalization of
Dummett logic, in other cases it may need some work. But existing ND
systems for many nonclassical logics not discussed in this book, e.g. for
relevant logics in [5], may be seen as an additional evidence for our claim.

Hybrid Systems

Finally, we should explain what is meant by a hybrid system. Readers
acquainted with modern modal logic may suspect that we mean deduc-
tive systems for hybrid logics. In fact, hybrid logics and deductive systems
for them (including hybrid systems as well) will be also dealt with in this
book. But the term hybrid system is by no means reserved for hybrid logics.
Basically, in this book, this qualification is applied to several kinds of de-
ductive systems developed by combination of elements taken from different
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sources. The construction of such systems is undertaken for optimalization
of deduction.

The need for hybrid systems is closely connected with the evolution
of logic. Development of computer sciences, investigations on artificial in-
telligence, problems with knowledge representation and management, and
many other related factors, resulted in substantial changes in logic. Prob-
lems traditionally seen as technical and disregarded by logic community,
currently provide the main areas of research. These changes, making logic
less theoretical and more practically oriented, have strong impact on the
methodology of deduction as well.

One of the cornerstones of modern formal logic is the distinction be-
tween syntactical and semantical investigations. What is defined in terms
of the shape of expressions belongs to syntactical studies, what is defined
in terms of interpretation belongs to semantics. A privileged position of
completeness and soundness proofs in many studies is a very good witness
of the importance of this distinction. In traditional reflection on methods
of logic both approaches are treated as complementary. Syntactical meth-
ods are seen as tools for proving, whereas semantical methods are seen as
tools of falsification. The introduction of systems of universal character, like
tableaux, did not change this popular view. Even today in many modern
textbooks one may find this tendency still alive.

Likewise, in traditional metalogic also decidability was taken seriously
but practical aspects were rather ignored. It was enough to show that there
is an algorithm which in finite time may always find an answer. Development
of computer industry and growing interests in fast-running programs have
changed the perspective. Even in case of undecidable logics one may con-
struct reasonably efficient programs, thus undecidability does not exclude
automation. On the other hand, even decidable theories may be practically
nontractable if they require too much time or memory. A dynamic devel-
opment of complexity theory is one of the signs of this trend. Searching for
efficient methods seems to be much more important nowadays than proving
completeness or decidability. From the standpoint of practical applications
of logic (like, e.g. in expert systems or computer-aided decision making) one
is rarely interested in complete systems but always in fast ones. The great
success of Horn clauses may serve as an example of wide applicability of
such “partial” logics.

Hence, in search of optimal logical tools, problems of theoretical purity
are not so important. Good results are often obtained by free combination
of tools taken from several sources. Deductive systems resulting from such
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operations are called here hybrid systems. One may distinguish at least two
types of hybridization:

1. An introduction of syntactically encoded elements of semantics into
the realm of deductive (syntactic) system.

2. A combination of different types of deductive systems which were orig-
inally devised for the realization of different deductive tasks.

Both types of hybridization are of unequal status. Using elements of se-
mantics in deductive systems has rather long tradition. In fact, the appli-
cation of semantical information was always a natural way of supporting
deduction. For example, it often appeared in several forms of diagrams
representing (partial) interpretation.3 Development of mathematical logic,
and, in particular, the popularity of Hilbert program in its first phase, led
to absolutization of the distinction between syntax and semantics, as we
have already remarked. But this is not only artificial; it may be harmful,
both from the standpoint of optimal tools of deduction, and of the practice
of teaching logic. As for the latter case one may note a great popularity of
such programs for teaching logic like Tarski’s World or Heterogenous Logic
(both due to Barwise and Etchemendy). Generally, it seems that several
attempts at erasing the border between semantics and syntax appeared al-
ready in the first half of XX century. One may compare in this respect the
approaches of Beth or Quine in their books on logical methods [27, 226].

Hybridization of this type is realized in different ways in modern logic.
Some of the techniques applied in systems for modal logics, like introduc-
tion of diagrams, rectangles, brackets into tableaux, or generalizations of
sequents (hypersequents, multisequents, e.t.c.) will be shortly described
in Chapters 7 and 8. But the main technique for syntactical encoding of
semantics considered in the book is labelling. It is superior to other tech-
niques in two respects. First, labels may take different forms dependant
on the kind of (elements of) semantics we want to use and on the grade of
semantical involvement. Second, labels may be applied in combination with
any kind of deductive system. In particular, deductive systems for hybrid
logics may be also seen as an important example of labelled systems of a
very special sort.

The second type of hybridization was not widely applied so far but it
may lead to the great improvement of traditionally recognized deductive

3One may find a survey of such techniques in, e.g. Bocheński [43], Kneale [163],
Marciszewski and Murawski [181].
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systems. We have already remarked that no single type of a system may be
viewed as better than others in all respects. But a reasonable combination
of rules, techniques, strategies taken from different sources, may result in
a system which inherits good properties of all parents. Such systems may
realize different deductive tasks in satisfying way without the necessity of
changing the basic system. The attempts of this kind are undertaken for
the creation of integrated environments for working with different logics or
theories. We mean here a variety of programs qualified as a logical frame or
generic prover, like Isabelle, Automath, Otter or Mizar.4 In our opinion, ND
systems, due to their rich assortment of deductive tools, are best prepared
to work as an uniform basis for the integration of other types of rules and
techniques. In what follows we will provide some examples of such ND-based
hybrid systems.

Overview

The book may be divided into three parts. The first part comprises 4
chapters and lays down the foundational issues concerning ND systems in
standard and extended form. Chapter 1 introduces classical and free logics
and several technical notions concerning deductive systems, rules e.t.c. The
next Chapter presents a short history and a systematization of several forms
of standard ND systems. The distinction between different formats of ND
is essential since, as we shall see, not all of them may be used as a suitable
basis for extension to modal or other nonclassical logics. In this book we
focus on ND in Jaśkowski’s format, in the version called KM due to Kalish
and Montague. Several variants and generalizations of KM are provided in
due course, but it is usually pointed out whether these modifications may be
adjusted also to other versions of ND. Quite independently of the chosen ND
format a lot of different formalizations of first-order classical and free logic
were proposed. This is in contrast to rather uniform treatment provided
for sequent calculi or tableau systems. We characterize the most important
of these several solutions either. The next step is to overcome limitations
of standard ND. For that reason in Chapter 3 we survey different types of
deductive systems that may provide inspiration for generalizations of ND.
It is a subject of Chapter 4, introducing analytic and universal versions of
standard ND able to simulate tableau systems and KE system of D’Agostino
and Mondadori. Finally, we introduce RND (resolution based ND) oper-

4Cf. Basin [23] for a good introduction into this theme.
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ating on clauses, a powerful generalization of ND directly simulating many
clausal systems like resolution calculi or Davis/Putnam method.

The second part (Chapters 5, 6, and 7) is concerned with modal log-
ics and their formalization in standard ND systems. Chapter 5 provides a
short introduction to the families of modal logics which are dealt with in
this book. In Chapter 6 we present standard formalization of modal logics
in sequent and tableau calculi and survey different approaches to construc-
tion of ND for modal logics. One of them, due to Fitch, is then exploited
because it is the most extensive. We provide a few versions of KM system
based on Fitch’s approach. Chapter 7 shows some other possible extensions
based on standard approach; in particular, two variants of RND for modal
logics are introduced. Some theoretical problems, as well as limitations of
standard method, are also discussed. We end up with the introduction of
some nonstandard approaches to formalization of modal logics.

The third part is devoted to detailed exploration of one of the nonstan-
dard approaches to formalization of modal logics, based on the application
of labels. The term labelling is treated here in the very wide sense, compris-
ing also hybrid logics, seen as a form of internal labelling. In Chapter 8 we
start with general remarks on several forms of labelled systems and focus
on the popular solution due to Fitting. In particular, we demonstrate that
it is possible to apply this technique also to weak modal logics and combine
labels not only with ND but also with RND. Chapter 9 shows that Fitting’s
labels may be also used to formalization of logics characterized by linear
frames. This group is treated separately not only because of its importance
(for instance in formalization of linear time) but because of specific tech-
nical problems we encounter. Moreover, the solution we propose may be
also applied to other important logics determined by frames described by
the so called universal implications. Chapter 10 has more technical char-
acter. We present a series of constructive completeness proofs for many
analytic labelled ND systems, based on suitable proof search procedures.
Some questions of efficiency and optimization are also briefly discussed.

Although systems based on the application of Fitting’s labels are more
extensive than standard ND systems, they still suffer from some limitations.
The use of stronger forms of labelling leads to more extensive solutions. Par-
ticularly interesting form is provided by the use of hybrid logics. Chapter 11
is a short introduction to varieties of languages covered by this term. In
Chapter 12 we survey deductive systems provided for hybrid logics and pro-
vide ND and RND systems of a very extensive character. In fact, these
two chapters may be treated as a separate part, where the most extensive
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results are eventually offered.
Thus one may note that we try to extend the possibilities of ND systems

gradually. Standard ND is first modified to obtain universal and analytic
form for classical logic. Next we examine different ways of extending stan-
dard ND to modal logics. Then we add external labels to improve extensiv-
ity and to obtain an analytic ND for modal logics. At the end we introduce
stronger (internalised) form of labelling which is the most extensive solution.

Finally, we should say a few words on what this book is not about.

Although there are parts of it where some algorithms are stated it is not
a book on automated natural deduction. ND is treated here as a practical
deductive tool of a great pedagogical value, useful rather for pen and paper
implementation. Decision procedures for some systems are defined for the
need of constructive completeness proofs rather than for real application.
We are interested in proof search but performed by means of natural and
simple rules. Hence although we show that resolution may be simulated
in ND, no discussion of unification, and skolemization is provided.5 In
our opinion these techniques, despite their efficiency, are not natural; their
application may speed up a proof, but not make it more readable. We also
do not describe resolution proof search strategies since they are presented
in many places; the interested reader is encouraged to test for himself how
they work in the setting of RND.

Again, for the same reasons we do not take up theoretical questions
connected with ND. In particular, problems of normalization of proofs are
sometimes signalled but no systematic treatment is provided. In our opin-
ion these results are very important but have rather theoretical character,
whereas this study is concerned with these aspects of ND which may simplify
doing proofs by hand. Also, no discussion of matters concerning encoding
ND in lambda calculus through Curry-Howard isomorphism, e.t.c. is pro-
vided. These are certainly very important aspects of investigation on ND
but again of theoretical character and very technical in nature. Inclusion of
such considerations would result in another book, certainly harder to write.
Instead, the question of analyticity is investigated as having a serious impact
on the practice of proof search.

In the search of universal, general and extensive variants of ND we make
free use of other types of deductive systems. But this is not a book on other

5One may find a presentation of respective forms of these techniques suitable for ND
in Pollock [217].
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proof systems so many of them are not even mentioned. In particular,
our presentation of deductive systems for modal logics is far from being
complete. Only these systems are introduced that satisfy at least one of the
following criteria:

• They may be combined in some way with ND systems.

• They are extensive (at least potentially they have wide scope of ap-
plication).

• They offer a possibility of formalization of bimodal temporal logics.

• They provide rules for logics of linear models.

The first criterion is obvious since we have chosen ND systems as a basis for
obtaining uniform, general and universal hybrid systems. Remaining ones
are connected with the application to modal logics.

Since the book is intended to a wide audience interested in practical
application of logical tools, a detailed statement of technicalities is often
avoided. In particular, if some definitions or proofs go along similar lines as
those previously stated, the details are usually omitted and we rather en-
courage the reader to do it as an exercise. Certainly, the readers interested
only in the application of systems, not in proving their properties, may skip
respective parts of the text. On the other hand, there are some harder and
more demanding parts which may be of interest for more technically ori-
ented reader. They are generally connected with establishing adequacy of
described ND systems. Since we are concerned with practical application
of ND we were trying to reduce to minimum such metalogical proofs. Com-
pleteness results in most cases are obtained by simulation of other complete
deductive systems, stated in quite an informal way and rather easy to fol-
low. But in some cases there is no possibility to simulate something better
known and full completeness proof must be stated instead (e.g. for labelled
ND for linear logics in Chapter 9). Similarly, proofs of decidability based on
proof search procedures defined for analytic version of ND in Chapters 4 and
10 are stated in detail, at least in these parts where specific features of ND
play the crucial role. We have paid an attention also to soundness proofs
for ND systems. Obviously, the reader interested only in finding working
ND systems may skip these parts of the text without a loss.

This book is based on the author’s habilitation published in Polish in
2006, and defended succesfully in 2007. Almost half of the present text is a
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(rather free and revised) translation of much of it. But this work contains
substantial enlargement of that book. In particular, we have added here a
treatment of first-order (classical, free, modal) logics, formalizations of weak
(congruent, monotonic, regular) modal logics, and extended strongly the
exposition of standard ND for modal logics and a treatment of hybrid logics.
As a result, the book contains some parts based not on the habilitation but
rather on some of my other papers devoted to natural deduction and modal
logics. All dependencies on my other papers are credited in the text; in
particular, Chapters 11 and 12 are heavily based on [155].
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Chapter 1

Preliminaries

This Chapter has an introductory character. The main objective of Sec-
tion 1.1. has been to recall the basic information on the language of clas-
sical propositional logic – CPL and on the quantificational logic in classical
(CQL) and free version (FQL). The approach chosen here is rather in-
formal. In case of CPL we introduce only the language and syntactical
conventions applied throughout, while in case of QL, a brief outline of clas-
sical and free logic is additionaly highlighted by some comments concerning
philosophical motivations. The section contains also some technical infor-
mation, e.g. on relations and trees, essential in the foregoing. It should be
emphasized that this section is just to establish notation and to keep the
text self-contained, so much of it may be skipped in the first reading and
consulted when necessary for understanding later chapters.

Section 1.2 introduces some background information on formalization of
logic in general, and the taxonomy of popular types of deductive systems.
It is of a slightly different character than the previous one since it amplifies
some theoretical apparatus concerning deductive systems extensively used in
the sequel (although not in common use). Therefore, more careful reading
is recommended here before going further.

1.1 Classical and Free Logic

1.1.1 Basic Propositional Language

Most of the material of this book is devoted to propositional logics, so it is
reasonable to treat this part of the formal machinery separately. It is not
necessary to present a classical propositional logic (CPL in short) since a

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 1
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reader may find excellent presentations of it elsewhere. In this subsection
we confine ourselves only to the introduction of the language, basic notation
and conventions which will be used extensively in the text.

In what follows we will use rather standard form of propositional lan-
guage for classical logic. Let LCPL denote an abstract algebra of formulae:

〈FOR,¬,∧,∨,→〉 (1.1)

with denumerable set of propositional symbols.

PROP = { p, q, r, . . . , p1, q1, . . .} ⊆ FOR (1.2)

Operations of this algebra correspond to the well known functors (or con-
nectives) of negation, conjunction, disjunction and implication. ϕ, ψ, χ will
be used to denote any formulae in LCPL and in each language considered
further. For unary functors we will apply prefix notation, and for binary
functors – infix notation; in particular the rules for obtaining the set FOR
of all formulae of CPL look as follows:

• if ϕ ∈ FOR, then ¬ϕ ∈ FOR;

• if ϕ ∈ FOR and ψ ∈ FOR, then (ϕ
ψ) ∈ FOR, where 
 ∈ {∧,∨,→}

Elements of PROP and their negations are called literals; positive and
negative, respectively.

To limit the number of necessary parentheses, we admit a convention
governing the strength of argument’s binding. For binary functors we as-
sume that ∧ binds tighter than ∨, and ∨ binds tighter than →.1 Negation,
and all unary functors in general, are assumed to bind their arguments
tighter than binary functors. Additionally we omit outer parentheses for
any formula and inner parentheses in case of many occurrences of associa-
tive operations like conjunction or disjunction. Thus:

p ∨ ¬q ∧ r → p ∧ ¬s ∨ q ∧ s

is meant as a shortcut for:

((p ∨ (¬q ∧ r)) → ((p ∧ ¬s) ∨ (q ∧ s)))
1In case we use additional functor ↔ we assume that → binds tighter.
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After Smullyan [261] we will use symbols α, β for denoting the following
types of formulae:

α α1 α2 β β1 β2

ϕ ∧ ψ ϕ ψ ¬(ϕ ∧ ψ) ¬ϕ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ¬ψ ϕ ∨ ψ ϕ ψ
¬(ϕ→ ψ) ϕ ¬ψ ϕ→ ψ ¬ϕ ψ

Following the above convention we will often divide compound formulae on
α- and β-formulae. Γ, Δ, Σ denote any (usually finite) sets of formulae.

Definition 1.1 (Complements, subformulae)

• −ϕ denotes the complement of ϕ or complementary formula of ϕ
(sometimes also called a conjugate); it denotes the negation of ϕ,
if it is unnegated formula, otherwise it refers to the formula where
negation is deleted (it is ψ, if ϕ = ¬ψ, or ¬ϕ otherwise). −Γ is the
result of turning all elements of Γ into their complements.

• Subfor(ϕ) (Subfor(Γ)) is the set of all subformulae of formula ϕ (the
set of formulae Γ) defined as usual. The union of all subformulae of
the set Γ and their complements will be denoted as Γ, in particular,
for single formula ϕ such a set will be denoted as {ϕ}

Let us note that the complement of any α-formula is always β-formula
and conversely: the complement of any β-formula is α-formula. Also the
complement of every literal is always a literal.

We will often use also propositional constants: ⊥,� and binary connec-
tive of equivalency ↔, defined in a standard way:

Definition 1.2 (⊥,�,↔)

⊥ := p ∧ ¬p ; � := ¬⊥

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Note that if ⊥ and � are in use they are also treated as literals.

Every finite set of formulae may be interpreted either disjunctively – as
a disjunction of its elements (D-set), or conjunctively (C-set). If we need
to show explicitly the intended interpretation of Γ as D-set (or C-set), then
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we use symbols ∨Γ (∧Γ). Empty D-set is understood as ⊥; empty C-set is
understood as �.

Sets containing a pair ϕ, −ϕ are of special importance and will be
called complementary. Complementary D-set is obviously interpreted as
� whereas complementary C-set is interpreted as ⊥. Following Fitting’s
custom we will often use the name “clause” instead of D-set; it is a natural
generalization of the standard use of this notion. Ordinary clauses contain-
ing only literals will be called atomic clauses. In particular, Horn clauses are
atomic clauses with at most one positive literal. Let’s note that a formula
in normal conjunctive-disjunctive form (CNF) is a C-set containing only
atomic clauses (or elementary disjunctions); dual disjunctive-conjunctive
form (DNF) is a D-set containing only C-sets of literals, called elementary
conjunctions (i.e. made of literals only).

Ordered pairs consisting of finite (possibly empty) C-set followed by
D-set will be called sequents, and denoted as Γ ⇒ Δ, where C-set Γ is
the antecedent and D-set Δ is the succedent of a sequent. In view of the
above claims concerning C- and D-sets, Γ ⇒ means that Γ ⇒ ⊥, whereas
⇒ Δ means that � ⇒ Δ; ⇒ is just another notational convention for
⊥. Note that Horn clauses are often presented as sequents with an atomic
clause consisting of only positive literals as the antecedent and at most one
positive literal in the succedent. So instead of ¬p ∨ ¬q ∨ ¬r ∨ s we may
write p, q, r ⇒ s to the same effect. It is clear that every sequent may be
expressed as a clause and vice versa and, in particular, every atomic clause
can be expressed equivalently as atomic sequent.

1.1.2 The Language of First-Order Logic

In what follows we will consider only first-order logic, with quantifiers bind-
ing only individual variables. We do not treat terms in their full variety
with functions and definite descriptions. Thus the basic quantificational
language with identity (LQLI

2) is built as follows:

1. Vocabulary of LQLI consists of the set of connectives and:

• denumerable set of individual variables V AR = {x, y, z, ...}
• denumerable set of individual constants CON = {a, b, c, ...}
• den. set of predicate symbols of n-arity PRED = {A,B,C, ...}

2Sometimes the reduct of this language without = will be considered called LQL.
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• first-order quantifiers and identity predicate: ∀,∃,=

2. The set of terms TERM is the union of V AR and CON . Sometimes
we will restrict this set to variables only; such a version of quantifica-
tional language will be called pure.

3. Simple formulae (atoms) of LQLI are defined by the clause:

• if P is n-ary predicate, then Pτ1 . . . τn ∈ FOR, where the list
τ1 . . . τn consists of n (not necessarily different) terms.

4. Compound formulae are built as in the propositional case (including
bracketing conventions) with addition of the following clause:

• if ϕ ∈ FOR, then for any variable x, ∀xϕ,∃xϕ ∈ FOR; ϕ is the
scope of a quantifier.

Note that propositional symbols are treated as predicate symbols of arity 0.
For binary constant predicate = we apply usual convention writing τ1 = τ2
instead of = τ1τ2. We assume that quantifiers bind their arguments with
the same strength as negation.

An occurrence of a variable x in the scope of ∀x or ∃x is bound, otherwise
it is free. A variable is bound (free) in a formula if it has at least one bound
(free) occurrence in that formula. Note that a variable may be both free
and bound in the same formula. ϕ(x) denotes a formula with free variable
x (containing at least one free occurrence of x), V F (ϕ) (V F (Γ)) denotes
the set of all free variables of formula ϕ (the set Γ). If V F (ϕ) = ∅, then ϕ
is called a sentence (or closed formula), otherwise it is an open formula.

ϕ[x/τ ] denotes the result of proper substitution of the term τ for x. It
means that all free occurrences of x are replaced by τ and, in case τ ∈ V AR,
that all new occurrences of τ are also free in ϕ.

ϕ[τ1//τ2] denotes a result of replacement of τ1 by τ2. Replacement is not
bound to variables but may be performed on any terms, and is not bound to
all but may be performed on some chosen (free, if τ1 ∈ V AR) occurrences.

Remark 1.1 We could avoid some complications connected with the defi-
nition of proper substitution if we follow Gentzen and introduce additional
category of terms, called parameters (or quasi-names, or arbitrary names).
In such versions of first-order languages, there is no open formulae in the
sense given above. Semantical status of parameters is ambiguous; some au-
thors treat them as another sort of variables with only free occurrence, and
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some use just individual constants as parameters (cf. Garson [105]). We
will follow the latter solution when presenting deductive systems with rules
operating on parameters. ♣3

Once again, after Smullyan [261] we may extend uniform notation for
denoting the following types of formulae:

γ δ γ(τ) and δ(τ)
∀xϕ ∃xϕ ϕ[x/τ ]
¬∃xϕ ¬∀xϕ ¬ϕ[x/τ ]

Following the above convention we will often divide compound formulae on
γ- (or universal) and δ- (or existential) formulae.

All the notions from the preceding subsection concerning formulae and
their sets in propositional languages are easily redefined for first-order lan-
guage, in particular atomic formulae and their negations are counted as
literals.

A classical version of first-order logic will be called briefly CQL (without
identity) or CQLI. But perhaps it is not the best first-order logic.

1.1.3 Some Reasons for Introducing FQL

Considerations on first-order modal logics have shown that there are several
problems with satisfactory combination of quantifiers and modality. As we
will see, these problems have lead either to changes in quantifier behavior
or to weakening of modal apparatus. But even without troubles raised
by modal constants we have numerous problems with CQL and CQLI
applied to formalization of natural language that lead to introduction of
some nonclassical forms. Let us look briefly at some important questions;
for more detailed discussion one should consult e.g. Garson [105] or Fitting
[96].

First of all: a classical QL forces very narrow understanding of the
category of names. Nondenoting terms are not considered as possible values
of individual constants.

Second, quantifiers have existential import which leads to many uncom-
fortable consequences. Below we list some examples:

• Sentences like “Some things do not exist.”, “Something exists.” cannot
be formalized at all.

3We will use ♣ to signal the end of the remark.
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• Some theses of CQL like Aa → ∃xAx, ∀xAx→ Aa also force names
to yield existential import, and their consequence ∀xAx → ∃xAx ex-
cludes empty domains in models.

• In CQLI ∃x(x = a) forces existence of any objects (e.g. God), on
the other hand, a formalization of any sentence about nonexistence of
some fictional object leads to contradiction.

There are several strategies of dealing with these problems. Following Gar-
son [105] we recall the most important:

1. One may treat names that have uncertain status with respect to de-
notation as predicates. Sentences claiming either existence or nonex-
istence of some object, e.g. God, may be formulated (∃xGx,¬∃xGx)
and they are neither theses nor contradictories.

2. Russell’s theory of definite descriptions may be used to eliminate such
troublesome names.

3. We may change a traditional interpretation of quantifiers thus aban-
doning existential import.

4. Finally, we may leave CQL and introduce free logic FQL

In our opinion the last choice is the best because strategies 1–3 suffer from
serious drawbacks. One of them is practical. In case of strategy 1 or 2
we obtain for many sentences rather complicated formalizations. Moreover,
sentences like “Some things do not exist.”, “Something exists.” still cannot
be formalized.

There is also some theoretical problem. There are no criteria for de-
ciding which names should be treated as terms and which as predicates or
eliminable descriptions. Consequently, it may lead to total elimination of
names.

The last problem has a logical character; in case of strategies 1 and 2,
either leads to some unnatural inferences. For example from the sentence
“Pegasus does not exist.” we may draw the following logical consequences:

• In strategy 1, it follows that “Pegasus is winged.” but also “Pegasus
is a lizard.”, since ¬∃xPx |= ∀x(Px→ Ax) for any A.

• In strategy 2, it follows that “Pegasus is not a lizard.” but also that
“Pegasus is not winged.”, since ¬∃xPx |= ¬∃x(Px ∧ ∀y(Py → x =
y) ∧Ax)
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It seems that solution 3 works better. Assume that we read ∃x as “for some
possible x”, ∀x – “for any possible x”. Many problems disappear; e.g. we
may use some empty names since ∀xAx→ Aa does not imply an existence
of the designate of a, thesis ∃x(x = a) states only the possibility of existence
of this designate. Moreover, if we add existence predicate E, then sentences
like “Some things do not exist.”, “Something exists.” may be formalized as:
∃x¬Ex, ∃xEx

But some doubts may be still raised against this solution. First of all,
such a reading is not compatible with Quinean tradition, in particular with
his famous criterion of existence. Also addition of existence predicate is
against strong philosophical tradition (e.g. Thomist criticism of ontological
proof). Also, many philosophers or logicians (like Quine) have objections
to the acceptability of possibilia, and even those who do accept them, may
still rise some objections. Note, that in this approach we do not claim that
there exist designates of any name, but we still obtain that they (e.g. God)
possibly exist. Some philosophers maintain that it should be rather proved,
not assumed. On the other hand, philosophers believing in rich universe
(like Meinong) might be dissatisfied because names of contradictory objects
still cannot be treated as terms.

The last solution is in a sense the most radical since we abandon some
very characteristic theses of CQL. The rules of alternative logic are more
complicated, but in a sense more natural, particularly in modal setting.
The most important feature of FQL is that existential import is saved for
quantifiers but not for names. As a result ∀xAx → Aa, ∃x(x = a) are not
theses. It allows more natural formalization of natural language sentences –
we may treat every name as a term and read quantifiers in a traditional way.
Also in free logic with identity (FQLI) existence predicate may be defined:

Eτ := ∃x(x = τ) (1.3)

In a version without identity we will use it as an additional primitive con-
stant.

1.1.4 Formalization of CQLI and FQLI

In this place we recall the basic information concerning semantics of classical
and free logic and their axiomatic formalization. In case of free logic we
restrict the presentation to positive free logic and the kind of semantics



1.1. CLASSICAL AND FREE LOGIC 9

which is minimal modification of classical semantics and closely related to
the solution applied in modal QL.4

Models

First-order models are structures of the form M = 〈D,V 〉, where D is a
nonempty domain and V is an interpretation of nonlogical constants defined
as follows:

– V (c) ∈ D, for any individual constant c
– V (Pn) ⊆ Dn, for any n−ary predicate Pn

An assignment of variables a is a function a : V AR −→ D. By axo we will
denote an x−variant of a, i.e. an assignment which is like a but with object
o from D specified as a value of x.

An interpretation I of the term τ in a model and under an assignment
is defined as follows:

I(τ) :=

{
a(τ) if τ ∈ V AR

V (τ) if τ ∈ CON

The key notion of satisfaction of a formula in a model under an assignment
is defined as follows:

M, a � Pn(τ1...τn) iff 〈I(τ1), ..., I(τn)〉 ∈ V (Pn)
M, a � ¬ϕ iff M, a � ϕ
M, a � ϕ ∧ ψ iff M, a � ϕ and M, a � ψ
M, a � ϕ ∨ ψ iff M, a � ϕ or M, a � ψ
M, a � ϕ→ ψ iff M, a � ϕ or M, a � ψ
M, a � τ1 = τ2 iff I(τ1) = I(τ2)
M, a � ∀xϕ iff M, axo � ϕ for all o ∈ D
M, a � ∃xϕ iff M, axo � ϕ for some o ∈ D

ϕ is satisfiable (generally L-satisfiable, for any considered logic L) if there
is a model and an assignment that satisfies ϕ, otherwise it is unsatisfiable.
|= ϕ means that ϕ is satisfied by all models and assignments, hence it is a
classical tautology (or classically valid formula). Note that if x is not free
in ϕ, then M, a � ϕ iff M, axo � ϕ, for any x-wariant of a.

4For more information on different versions of free logic and their semantics consult
e.g. Bencivenga [25].
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In order to obtain a semantics for FQL we introduce the so called inner
domain – outer domain models. In this case a domain of a model is the
union of two disjoint and possibly empty sets: Do – outer domain, and Di –
inner domain. The latter set is interpreted as the set of all existing objects,
whereas the former is the set of all nonexistent (possible) objects. All other
details of characterization put above for classical case are left intact except
two clauses for satisfaction of quantified formulae. In these models they are
defined not for the whole domain but for Di, i.e.

M, a � ∀xϕ iff M, axo � ϕ for all o ∈ Di

M, a � ∃xϕ iff M, axo � ϕ for some o ∈ Di

In case we do not have identity but there is E as a primitive predicate
constant we add a clause:

M, a � Eτ iff I(τ) ∈ Di

The definition of satisfiability and validity in free logic is the same as in
classical case. But still we have two possible variants. Semantics with
models admitting empty Di is adequate for universally free logic,5 where
e.g. ∀xϕ → ∃xϕ is not tautological. If we restrict the class of models to
those with nonempty Di we obtain a stronger variant of free logic, where
the above formula is a tautology.

The notion of entailment (or consequence relation) for all the logics
described above may be reduced to the notion of validity as follows:

Definition 1.3 (Entailment)

Γ |=L ϕ iff |=L ψ1 ∧ .... ∧ ψn → ϕ, where {ψ1, ..., ψn} ⊆ Γ and L is classical
or free logic.

Axiomatizations

The earliest, and still the most popular, syntactic style of defining logics
was axiomatic, especially in the form provided by Hilbert. In what follows
such systems are called H-systems. Although we do not aim to focus on
axiomatic formalizations and their properties, it is handy to recall some
systems in order to show clearly the differences between classical and free

5Sometimes logics of this sort are called inclusive, particularly in contexts where the
problem of empty domains is considered separately from the problem of non-denoting
terms – there are logics which are inclusive but not free.
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version of QL. Any axiomatic (or Hilbert) formalization of the logic L will
be denoted as H-L. In particular H-CQLI consists of:

1. Axioms of CPL.
Any complete set is suitable but for the sake of concreteness and for future
reference we display the following:

1 ϕ→ (ψ → ϕ)
2 (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))
3 ϕ ∧ ψ → ϕ; and ϕ ∧ ψ → ψ
4 ϕ→ (ψ → ϕ ∧ ψ)
5 ϕ→ ϕ ∨ ψ; and ψ → ϕ ∨ ψ
6 (ϕ→ χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))
7 (¬ϕ→ ¬ψ) → (ψ → ϕ)

2. Axioms characterizing quantifiers and identity:

∀E ∀xϕ→ ϕ[x/τ ]
∃I ϕ[x/τ ] → ∃xϕ
ID τ = τ
LL τ1 = τ2 → (ϕ→ ϕ[τ1//τ2]), where ϕ is atomic

3. Rules:

(MP ) � ϕ→ ψ,� ϕ / � ψ
(∀) � ϕ→ ψ(x) / � ϕ→ ∀xψ, where x /∈ V F (ϕ)
(∃) � ϕ(x) → ψ / � ∃xϕ→ ψ, where x /∈ V F (ψ)

Note that since we use axiom schemata instead of specific formulae, we do
not need to add substitution rule.

Some explanation is needed concerning the usage of �. In general, � ϕ
applied in schemata of rules means that ϕ is a thesis of respective system i.e.
ϕ has a proof being a sequence of formulae deduced from axioms with the
help of the rules. � Γ means that all formulae in Γ are theses of the system.
Usually the usage of � with no decorations is convenient and sufficient if
the system and the logic under consideration is known from the context or
if it is irrelevant. If such an information is essential we will be using �L
(or even �DS-L) to denote that it is a thesis of logic L (or a thesis of L in
deductive system DS). Thus in case of the above rules we should formally
use �H-CQLI to supply the exact information.

In what follows the set of all theses of any logic L will be denoted by
Th(L). �L ϕ means that ϕ is not a thesis of L. The relation of deducibility
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(provability) and inconsistency/consistency may be defined as follows:

Definition 1.4 (Deducibility, consistency)

• Γ �L ϕ iff �L ψ1 ∧ .... ∧ ψn → ϕ, where {ψ1, ..., ψn} ⊆ Γ

• Γ is L-inconsistent iff Γ �L ⊥, otherwise it is L-consistent.

In order to get an axiomatization of CQL we should get rid of two axioms
for =. On the other hand, for an axiomatization of universally free logic we
must replace axioms and rules for quantifiers in H-CQL (or H-CQLI) with
the following weaker versions6:

F∀E ∀xϕ→ (Eτ → ϕ[x/τ ])
F∃I ϕ[x/τ ] → (Eτ → ∃xϕ)
(F∀) � ϕ→ (Ex→ ψ(x)) / � ϕ→ ∀xψ, where x /∈ V F (ϕ)
(F∃) � ϕ(x) → (Ex→ ψ) / � ∃xϕ→ ψ, where x /∈ V F (ψ)

With a view of strengthening the system so that the logic of nonempty
(inner) domain we must add one more axiom:

∃xEx (1.4)

Adequacy and Decidability

The systems discussed above provide adequate formalizations of respective
logics. We recall that the link between H-systems (and syntactic formaliza-
tions in general) and suitable classes of models is obtained via soundness
and completeness theorems of the form:

• (Soundness) if Γ �L ϕ, then Γ |=L ϕ

• (Completeness) if Γ |=L ϕ, then Γ �L ϕ

The last one is often formulated equivalently:

• if Γ is L-consistent, then Γ is L-satisfiable

6We assume that E is present in a language as primitive or definable by =, otherwise
the axiomatization is slightly more complicated.
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If the first theorem holds, then the system is sound with respect to the
suitable class of models; if the second holds, then it is (strongly) complete.
It is adequate if it is both sound and complete. Note that if Γ is empty (in
the first formulation) or finite, we have weak completeness, otherwise we
have a strong form (i.e. admitting infinite Γ).

Standard proofs of completeness apply the well known construction of a
model due to Henkin (based on the earlier Lindenbaum result). Essentially
it consists in showing that there is a unique infinite model that falsifies every
formula unprovable in L. This method of proof is therefore not constructive.
For questions of decidability and automated theorem proving it is more im-
portant that for many logics we will consider there are constructive methods
of proving completeness. They show how to find for any unprovable formula
some finite falsifying model. We shall be concerned with them in Chapters 4
and 10.

CPL is decidable logic, in the sense that there is an effective procedure
which, for every ϕ ∈ LCPL, resolves whether it is a tautology of this logic or
not. This is is a special form od decision problem generally called validity
problem for a logic L. Very often decidability of L is posed as the so called
satisfiability problem (or shortly, sat-problem) for L: given ϕ ∈ L, decide
whether ϕ is L-satisfiable. Clearly, these instances of decision problem are
complementary since, for every logic we will be dealing with, it holds that
|= ϕ iff ¬ϕ is not L-satisfiable. Hence, for any logic, validity problem is
decidable iff sat-problem is decidable.

The notion of effective procedure, or an algorithm, used in the char-
acterisation of decidability needs some explanation. There are plenty of
formal explications of it, in terms of Turing machines, Markov algorithms,
recursive functions, e.t.c, to mention the oldest and the most popular. Ad-
vanced investigations on these mathematical models of effectiveness form
the core of computability theory. We do not need in this book any formal
treatment of these matters however. Informally, it must be a method which
is mechanical (it works without any need for ingenuity), fair (it does what it
is assumed to do for every input) and terminating (it works in finite time).
On the other hand, in all mathematical models of effective procedure no real
bounds are put on the time of performance or amount of memory needed to
store the data. Hence effective is not the same as efficient. Investigations
on practical (time and space) requirements of algorithms, and classification
of decidable problems belong to complexity theory; we will say a bit more
about it in Chapter 5.
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First-order logic is not decidable but it is semi-decidable.7 It means that
there are procedures which applied to a thesis give you an answer “yes” in
finite time. But if tested formula is not a thesis we have no guarantee that
a procedure stops with negative answer. It is important that in practise
it does not preclude the automatization of a proof search. Moreover, there
are numerous fragments of first-order logic which are not only decidable but
even very efficient, in the sense of having very fast decision procedures (e.g.
the logic of Horn clauses).

1.1.5 Important Derived Notions

First-order language allows us to introduce precisely some notions concern-
ing relations and special first-order theories needed in the sequel.

Definition 1.5 (Closures of relations) Let R be any binary relation on
a nonempty set A, then:

• R+ is a transitive closure of R iff, R+ is the smallest transitive relation
on A such that R ⊆ R+;

• R∗ is a reflexive transitive closure of R iff, R∗ is the smallest reflexive
and transitive relation on A such that R ⊆ R∗

Recall that a binary relation R on a nonempty set A is a set of ordered
pairs from A2. In particular: R is transitive on A iff for every x, y, z from
A, Rxy and Ryz implies Rxz, and reflexive iff Rxx for every x ∈ A. A
relation which is both reflexive and transitive is a relation of quasi order (on
some set A). It is an equivalence relation if additionaly it is symmetric i.e.
if Rxy implies Ryx for all x, y, z from A. In case of equivalence relation R
we may obtain a division of A on nonempty and mutually exclusive subsets
(classes of abstraction from R) containing exactly these elements of A which
are related to each other. The hierarchy of ordering relations is also built
up from quasi orders but by the addition of other properties. R is a partial
order on A iff it is antisymmetric quasi order, i.e. if for any different x, y,
Rxy implies ¬Ryx. We obtain a linear order if R is additionaly dichotomic,

7More formally, the set of tautologies is not recursive but still it is recursively enu-
merable. In fact, undecidability of QL follows from the so called Church-Turing thesis
which is not provable but commonly believed to be true. It is a claim that the set of com-
putable functions coincides with the set of functions computable on any of the proposed
mathematical models of computation, like Turing machines.



1.1. CLASSICAL AND FREE LOGIC 15

i.e. either Rxy or Ryx for any x, y in A. There is a parallel hierarchy of
strict orders, where suitable relation is transitive but irreflexive, i.e. Rxx
holds for no x ∈ A. These two properties imply that a relation is also
asymmetric in the sense that Rxy always implies ¬Ryx. These properties
of a relation define the basic kind of strict partial order; we obtain a strict
linear order if it holds also trichotomy, i.e. either Rxy or Ryx or x = y for
any x, y in A.

We will need also some binary operations on relations; ordinary set the-
oretical union ∪ and specifically relational composition ◦ defined as follows:

Definition 1.6 (Operations on relations)

• R1 ∪R2xy := R1xy ∨R2xy

• R1 ◦ R2xy := ∃z(R1xz ∧R2zy)

In particular, Rmxy denotes m−1-ary application of ◦ to R, or the distance
between x and y, thus R2xy is R ◦ Rxy, whereas m = 1 is just Rxy and
m = 0 means that x = y.

For further considerations the notion of a tree is of a basic importance.
It is characterized in several ways, not always equivalent, in mathematics,
computer science, logic. For our purposes we follow the definition from [35].

Definition 1.7 (Tree) T is called a tree if it is a relational structure 〈T ,R〉,
such that:

• there is a unique element r ∈ T , called root such that ∀t ∈ T ,R∗rt;

• every element t ∈ T distinct from r has a unique predecessor i.e. there
is only one t′ ∈ T , such that Rt′t;

• R is acyclic, i.e. ∀t ∈ T it is not true that R+tt.

All elements of T are called nodes, for every pair t, t′ such that Rtt′, t
is called the parent and t′ – a child; if R+tt′, then t is an ancestor and t′ is
a successor. Every node t with no children is called a leaf.

N -ary sequence 〈t1, ..., tn〉, where for each i < n we have Rtiti+1 is
called a path; every maximal path is a branch (in finite case it is a sequence
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from the root to a leaf). A path, where every node (except possibly the
last) has only one child is called a segment.

The number of children of a node is the branching factor of this node;
the branching factor of a tree is the biggest branching factor of its nodes. If
the branching factor of a tree is a natural number we have finitely generated
tree; trees with nodes having at most two children are called binary trees.

In what follows we will meet trees in several places, e.g. proof-trees,
trees of proof-search, tree-models. Very useful for our needs are finitely
generated trees, binary trees in particular. Below we recall some important
result concerning such trees – the König Lemma.

Lemma 1.1 (König) Every finitely generated but infinite tree has at least
one infinite branch.

By the König Lemma, to show that a tree is finite it is sufficient to show
that it is finitely generated and that every branch is finite.

Finally, we define three types of first-order theories characterized by for-
mulae of specific form. They will be of particular importance for relational
semantics of wide classes of modal logics.

The notion of Horn clause naturally extends to first-order language. It
is any sentence of the form:

(hc) ∀x1, ..., xk(ϕ1 ∧ ... ∧ ϕn → ψ),

where k ≥ 1, n ≥ 0, each ϕi and ψ is an atom.

Horn theory is a finite set of Horn clauses. Clearly, the scope of appli-
cation of Horn theories depends on what we count as atoms. Inclusion of ⊥
and identities in the set of atoms yields a significant generalization. Horn
clauses without such atoms (only predicate letters with terms) will be called
strict.

A direct generalization of Horn clause is that of a universal implication
of the form:

(ui) ∀x1, ..., xk(ϕ1 ∧ ... ∧ ϕn → ψ1 ∨ ... ∨ ψm),

where k ≥ 1, n,m ≥ 0, each ϕi and each ψi is an atom (m = 0 is interpreted
as ⊥).
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A universal theory consists of a finite set of such formulae. In fact,
every universal theory may be reduced to ∀x1, ..., xkϕ, where ϕ is in CNF,
since every implication of atoms is equivalent to ordinary clause, finite set
of clauses is equivalent to their conjunction and ∀ distribute over ∧. It is
obvious that every Horn clause is universal implication, provided we keep
the same specification of atoms.

The most general class of first-order theories we encounter for future
use is the class of the so called geometric theories (see [286]). A first-order
formula is geometric if it is built up from atoms of the form Rxy or x = y
with the help of ⊥,∧,∨ and ∃, only. A geometric theory is a finite set of
first-order sentences of the form:

∀x1, ..., xk(ϕ→ ψ), where ϕ and ψ are geometric formulae.

For better understanding in what way the notion of geometric formula
generalizes that of universal implication it is convenient to introduce the
concept of basic geometric formula. Simpson [257] has proved that each
geometric theory is equivalent to basic geometric theory, where each formula
has the form:

(bgf) ∀x1, ..., xk(ϕ1 ∧ ... ∧ ϕn → ∃y1, ..., yl(ψ1 ∨ ... ∨ ψm)),

where k ≥ 1, l, n,m ≥ 0, each ϕi is an atom and each ψi is an atom or a
finite conjunction of atoms.

To appreciate the generality of these notions let us note that such im-
portant mathematical theories like theory (classical and constructive) of
projective geometry, ordered fields or Robinson’s arithmetic may be axiom-
atized as geometric theories.

1.2 Deductive Systems, Rules, Proofs

1.2.1 Deductive Systems

In subsequent chapters we will discuss not only ND systems but many other
types of formalizations of logics. Since we are interested in their compari-
son, in the ways of combining them, and the transfer of results, it is crucial
to establish some form of unified description. It is not an easy task; existing
systems differ in many ways and sometimes even essentially the same (in
some respect) systems are presented by several authors by means of very
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different tools. The invention of logicians in creating new forms of presenta-
tion is amazing; in this respect they are quite similar to artists always ready
to break the existing boundaries. On the other hand, systematic reflection
on the general schema of formalization is rather poor and often not general
enough to cover all the existing systems.

In this book we use the term deductive system (DS in short) not in the
sense of Tarski (i.e. as a set of formulae closed under some operation of
consequence), but as a name for several formalizations of logics. Every DS
may be characterized on two elementary levels of description:

• the calculus, being a theoretical description of the set of primitive
rules;

• the realization, where we describe a practical form of application of a
calculus.

Remark 1.2 The distinction between the calculus and its realization is
essential because these two levels are independent. For example, two dif-
ferent axiomatizations of the same logic differ with respect to calculus (sets
of axioms and rules) but usually not with respect to realization, since the
form of defining and setting down a proof in Hilbertian proof theory is
rather standard. On the other hand, logic textbooks present many different
realizations of essentially the same (with respect to calculus) ND system.

Usually these two levels are not distinguished but for our future con-
siderations this distinction is important. In fact, the level of realization is
rather neglected by logicians; they simply use some form of realization but
they do not take this fact under consideration. The rare exception to this
custom may be found in Appendix 2 of Prawitz [220], where some remarks
on several forms of realization of ND systems are spelled out. ♣

1.2.2 Calculus

A calculus is a nonempty and finite set of schemata of rules of the shape:

X1, ..., Xk / Y1, ..., Yn k ≥ 0, n ≥ 1 (1.5)

with possible list of side conditions. Symbols Xi denote some data struc-
tures, which are transformed (by the rule) into data structures Yj . Which
type of data structures occurs in rules depends on the type of a system;
there may be single formulae, sets of formulae, sequents, labelled formulae
e.t.c. The notion of a rule we admit is very general but we assume that
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every rule is decidable, in the sense that for any concrete sequence of data
structures it may be established in finite time whether it is an instance of a
rule.

Usually we will abandon the set-theoretical notation in the description
of rules, e.g. the scheme of a rule modus ponens (MP ) will be written
as ϕ,ϕ → ψ/ψ, not as {ϕ,ϕ → ψ}/ψ. Sometimes it may cause some
misunderstandings, particularly in rules where the sets of formulae are single
data structures. In this case we will apply “ , ” to separate formulae in some
set, and “ ; ” to separate sets, e.g.: ϕ,ψ ; χ will denote {ϕ,ψ}, {χ}. To
display invertible rules in some DS we will apply symbol //; e.g. Γ // Δ
means that, in a system we have in fact two rules: Γ / Δ and Δ / Γ.

Remark 1.3 Our concept of a calculus is somewhat different from more
traditional understanding like in Church [70] or Wójcicki [285], where this
term corresponds to logics (syntactically understood) not to their formaliza-
tions. Calculus in the sense of Church is a quadruple containing a language,
a set of formulae, a set of axioms, a set of rules; in the sense of Wójcicki it is
a pair: a language and a consequence operation. Such concept of a calculus
is more general than ours – since we do not put specification of a language
in a calculus – but, in some other respect, too narrow for our purposes –
since, in principle, it is suitable only for axiomatic systems.

In fact, our concept of a calculus is closer to what Wójcicki describes
as a deductive base – a triple consisting of the set of formulae (axioms),
sequents (H-rules from Hilbert) and sequent rules (G-rules from Gentzen).
It is easy to note that all elements of any deductive base are representable
as elements of a calculus in our sense: axioms are represented as rules of the
form ∅/ϕ, H-rules as Γ / ϕ and G-rules as Γ1 ⇒ ϕ1, ...,Γk ⇒ ϕk / Δ ⇒ ψ.
In fact, our concept of a calculus is still a generalization of the concept of
a deductive base since we admit different forms of data structures as values
of Xi, Yj . ♣

1.2.3 Realization

In several DS’s we deal with a variety of forms in which a calculus may be
realized in deductive practice. Usually it is a set of instructions of how to
build a proof/derivation and apply rules, sometimes with additional tech-
nical devices. In our usage a derivation is a more general term than a
proof. There are systems admitting only proofs of theses or deduction of
consequences from assumptions (e.g. axiomatic systems or standard ND);
for them a definition of a proof is sufficient. But there are also systems
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allowing disproofs i.e. deductive falsification of non-theses (e.g. tableau
systems); such systems require a definition of derivation. Sometimes refu-
tational calculi are distinguished (e.g. tableaux, resolution), where instead
of a proof of ϕ we attempt to refute ¬ϕ, i.e. to derive ⊥ from it. Clearly
a succesfull refutation is just a (indirect) proof of ϕ, whereas failed (but
somewhat completed), refutation is a disproof of ϕ.

A proof (derivation) may have tree or linear structure. We focus on
this subject later on (cf. Chapter 2) but notice that it is not only a dif-
ference of presentation. In linear proofs (L-proofs for short) we use data
structures (formulae, sequents e.t.c.), whereas in tree-proofs (T-proofs) we
manipulate on their concrete occurrences labelling particular nodes of the
tree. It is of great importance, for example, in finding suitable realization
for substructural logics, but even in case of classical logic it makes some
difference – as we shall see in Section 2.4. – at least for ND systems. In
what follows we will divide DS’s on T- and L-systems according to the form
of a proof/derivation. In case of systems applying T-proofs we will often
use vertical notation already on the level of calculus in order to graphically
highlight the form of realization. So in case of ordinary trees with root at
the bottom instead of X,Y / Z we will write:

X Y
Z

In case of inverted trees (root at the top) instead of X/Y,Z we will write:

X
Y | Z

or X / Y | Z

This convention in many places will allow of shorter description of DS’s by
simply displaying the elements of a calculus without any detailed exposition
of its realization. But in case of ND systems we must focus on forms of
realization since they modify seriously the character of the system. For
example, we will obtain (in Chapter 4) two different ND systems on the
basis of the same calculus by putting suitable constraints on the application
of rules in the definition of a derivation. So, any precise definition of a
derivation added to a calculus and leading to full description of DS is, in a
sense, a restriction of a calculus.

The distinction between T- and L-systems in case of ND leads to some
additional complications as well. In some ND-systems that will be of special
interest for us, L-proofs have more complex form. It is connected with
the possibility of introduction of additional assumptions in the course of
proof. These assumptions initiate subordinate proofs (subproofs) embedded
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in the main proof which must be closed at some stage. As a result, instead
of a sequence of formulae in such L-proofs, we have a sequence of nested
(sub)sequences of formulae. On the level of calculus we will describe the
ways of introducing and closing subproofs together, as complex rules of
proof construction of the shape:

If X1 � Y1, ..., Xk � Yk, then Z � W (1.6)

So, theoretical characterization of such ND system (i.e. as a calculus) con-
tains two nonempty sets of rules: the rules of inference of the shape X/Y
and the rules of proof construction regulating the process of subproof gen-
eration.8

Calculi and their realizations do not provide an exhaustive way of analyz-
ing formalizations of logics, especially if we are interested in their practical
applications. The next possible step in constructing DS (the next level of
description) is to devise some algorithms for proof search; decision proce-
dures in particular. It is more strict characterization of the application of DS
than description of realization, since in the definition of procedures we often
put severe restrictions on the applicability of rules. This level of description
makes possible an implementation of the system for the needs of automated
theorem proving. Sometimes it is in fact a revision of underlying DS, where
suitable constraints are formulated on the level of calculus or its realization.
For example, in some types of DS’s devised originally for automated theo-
rem proving (cf. the presentation of Davis/Putnam procedure in Chapter 3)
it is difficult to extract a pure calculus and its realization from proof search
procedure. In this work we do not treat this aspect in a systematic way, but
(e.g. in Chapters 4 and 10) we provide some procedures suitable for some
types of ND systems. These are devised mainly for the need of constructive
completeness proofs, and we do not aim to formulate definite claims on their
efficiency. Further work in this direction would need an implementation of
these solutions and empirical testing of the performance.

8It may seem at first sight that the separation of these two types of rules in some kind
of ND systems is incoherent with our general characterization of a calculus. But it is
apparent, because every proof construction rule of the form (1.6) may be also presented
as an instance of a rule (1.5) with sequents Xi ⇒ Yi as premises and Z ⇒W as (the only)
conclusion. It is just a notational convention for making clear the difference between such
rules in ND L-systems using formulae and ND systems using sequents, where separation
of proof construction rules does not make sense, cf. Section 2.3.



22 CHAPTER 1. PRELIMINARIES

1.2.4 Extensions and Simulations

Usually to characterize a system we need a list of primitive rules. From the
theoretical point of view it is a sufficient description of the calculus, but –
at least in case of ND systems – we will consider also many secondary rules.
In general, they are of two types:

Definition 1.8 (Secondary Rules) For any DS and logic L let �DS-L
mean some deducibility relation constituted by primitive rules of the system,
then:

1. a rule of the schema X1, ..., Xk / Y1, ..., Yn is DS-L-derivable iff,

X1, ..., Xk �DS−L Y1, ..., Yn;

2. a rule (r) is DS-L-admissible iff, [X1, ..., Xk �DS-L Y1, ..., Yn iff,
X1, ..., Xk �DS′-L Y1, ..., Yn], where DS′ is DS with added rule (r).

The set of DS-L-derivable rules is denoted by DER(DS-L), and the set of
DS-L-admissible rules by ADM(DS-L).

It is easy to show that for any logic L, DER(DS-L) ⊆ ADM(DS-
L); the reverse inclusion holds only for logics having structurally complete
formalizations (e.g. many axiomatic systems for CPL). To show that some
rule is derivable in a system it is sufficient to build a scheme of its proof.
In consequence, the set of derivable rules for a formalization of some logic
is preserved for every extension of this logic in the system of the same sort,
i.e. DER(DS-L) ⊆ DER(DS′-L′), where L′ is any extension of L and DS’
is an extension of DS.

A proof of admissibility of some rule for DS-L is usually more com-
plicated since it is necessary to show that every proof using (r) may be
transformed into a proof where (r) is dispensable.9 Generally, in case of
admissible rules, preservation for any extension of L is not saved, since the
addition of some new primitive rules to the respective calculus may destroy
the result. Famous illustration of this problem may be provided by several
sequent calculi where cut elimination theorem holds for some logic but not
for its extension. For us the question will be interesting with respect to ND
systems, where we will often show admissibility of some proof construction
rules in order to prove that ND system may simulate proofs and proof search
strategies of other systems.

9That’s why in literature it is often said that the rule is eliminable.
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The concept of a simulation of one system by the other needs some
explanation.

Definition 1.9 (Simulation)

• Deductive system SD1 may simulate a system SD2 iff, there is some
computable function that allows every proof of SD2 to be recon-
structed in SD1.

• Deductive system SD1 may p-simulate (polynomially simulate) a sys-
tem SD2 iff, a result of a simulation is bounded by some polynomial
function in the length of a proof in SD2.10

The concept of p-simulation is particularly useful since in this case we obtain
such a form of mapping, from proofs in SD2 into proofs in SD1, which shows
that SD1 is, from the computational point of view, not worse than SD2.
Since a relation of p-simulation is a relation of quasi-order, and its symmetric
closure gives a relation of equivalence, we may obtain a systematization
(i.e. linear ordering of classes of abstraction from this equivalence relation)
of deductive systems with respect to their relative complexity. Systems
belonging to the same class of abstraction may be treated as representing the
same level of complexity (up to a polynomial). Clearly, one should remember
that the only measure of system’s complexity taken here into account is
the length of proofs, so it is not justified to say about two systems from
different classes of abstraction that the one is more efficient than the other.
For example, a system with essentially longer proofs may have essentially
smaller space of proof-search than a system with short proofs but requiring
much ingenuity for their construction.

In fact, in many cases we may provide even smarter forms of simulation.
[196] generalizes the notion of p-simulation from proofs to derivations in
general and introduces the notion of step-wise simulation. The last obtains
if we may show that there is some n such that for every inference step in the
simulated system there is at most n inferences performed in the simulating
system. In many cases we will show how to make a step-wise simulation of
some deductive system in the suitable version of ND system.

10We do not introduce formally the concepts of computable functions because the ques-
tions of computability and complexity theory are not the subject of this book but cf. some
elementary remarks in Section 5.5. The above informal characterization of p-simulation
will do for our interests; the reader may consult e.g. D’Agostino [2] or Schmidt [242] for
more information on several forms of simulation.
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1.2.5 Semantical Side

Our study is not proof-theoretical in the strict sense, we will be often dealing
with semantics. When presenting a variety of ND systems we will always
show their completeness, although sometimes in a sketchy way. In many
cases it suffices to obtain the result indirectly, by simulation of other system
which is known to be complete. For example, to simulate an axiomatic sys-
tem in ND system it is enough to prove all axioms and show that primitive
rules of the axiomatic system are primitive or secondary in ND. Simula-
tion of other systems in ND often requires more complicated operations (cf.
e.g. Chapter 4). In case of some logics (e.g. modal logics characterized
by models with linear accessibility relation) we will provide direct proofs of
completeness because the proposed analytic formalizations of these logics
have no counterparts in other types of DS’s (at least formalizations easily
simulated in ND).

Proofs of soundness of ND systems would need some semantic qualifica-
tion of rules. We restrict our considerations to rules of inference of the shape
Γ / Δ and proof construction rules of the shape: if Γ � Δ, then Π � Σ.

Definition 1.10 (Correctness of rules)

1. a rule of inference Γ / Δ is L-normal iff, in semantics for logic L it
holds Γ |= ϕ for every ϕ ∈ Δ;

2. a proof construction rule “if Γ � Δ, then Π � Σ” is L-normality
preserving iff, if Γ / Δ is L-normal, then Π / Σ is L-normal.11

The above concepts may be generalized for rules operating on other data
structures and for other relations of consequence. We will do it successively
in suitable places. Here we recall that for every relation of consequence |=
we assume that it satisfies some structural conditions, namely:

• (ID): X1, ..., Xk |= X1, ..., Xk

• (MON): If X1, ..., Xk |= Y1, ..., Yn, then X1, ..., Xk, Xk+1 |=
Y1, ..., Yn

• (TR): If X1, ..., Xk |= Z and Z, Y1, ..., Yn |= Yn+1,

then X1, ..., Xk, Y1, ..., Yn |= Yn+1.
11This property is a generalization of the concept of L-validity of rules introduced for

rules of inference which preserve the set of L-tautologies; cf. e.g. Pogorzelski [215].
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These conditions have more or less direct manifestation in several deductive
systems. Particularly interesting formalization in this respect is Gentzen’s
sequent calculus (SC), where all these properties are directly expressed by
rules: (AX), (W ) (weakening) and (Cut) (cf. Chapter 3). The last rule is
of great importance, it is present in many sorts of systems under several
names and shapes, often difficult to compare. For example: in resolution
systems it is a basic rule (Res), in axiomatic systems it is encoded in (MP )
and as a secondary rule (HS) (hypothetical syllogism), in system KE it
is a branching rule (BP ) (bivalence property), and in ND systems it is
encoded directly not only by variants of (MP ) but also by [RED] (the
rule of indirect proof or reductio ad absurdum). Moreover, (TR) is not
only represented directly by several rules but also indirectly involved in the
process of deductive inference, where we conclude that the output follows
from starting premises although it is deduced by the chain of intermediate
steps. In general, we will use the name cut always when it is not important
which particular rule of a particular system is under consideration. But we
will distinguish between the rules that express (TR) in a progressive way,
i.e. starting from antecedent of (TR) and going to succedent, and the rules
that express (TR) in a regressive way, from succedent to antecedent. For
example, (MP ) of axiomatic systems, and some of the rules considered in
Chapter 3, like (Cut) in SC systems, or resolution, are the examples of
progressive cut; on the other hand, (PB) in KE or tableau systems, [RED]
in ND are the examples of regressive cut.

1.2.6 Types of Deductive Systems

We close this Chapter with some systematization of existing systems which
will be the point of reference in further considerations. The general concept
of a deductive system needs some specification since there is a huge num-
ber of such systems of different character and applicability. Some of them
are devised for very special purposes, whereas others have quite universal
character; some of them are meant as formalization of just one method of
deduction, whereas others offer more freedom in choosing ways of proof
construction. Even in case of ND-systems a variety of forms of realization
causes a lot of problems in their systematization as we will see in the next
Chapter. It is not surprising that a good classification of DS’s is not an easy
task. Perhaps the best we can do is some reasonable typology. But for our
needs it is not necessary. With no pretension to exploit the subject we may
divide the basic types of DS’s into:
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• Axiom systems of the Hilbert type (H-systems)

• Natural deduction (ND)

• Resolution systems

• Sequent calculi (SC)

• Tableau systems (TS)

• KE system

• Connection systems

• Refutation systems

• Davis/Putnam system (DP)

• Goal oriented systems

Using different criteria we may divide all the systems into some more exten-
sive classes collecting some types of DS’s representing family resemblance.
In particular, it is important for us to distinguish between systems that are
based on the application of cut and those that profit from the possibility of
elimination of explicit form of this rule.

We are not going to discuss all the systems from the list, since the book is
devoted to ND systems for classical and modal logic. But some of them will
be important as the source of inspiration either for obtaining more general
forms of ND system or for providing suitable rules for modal logics. So after
the presentation of the standard form of ND we recall the basic information
on some other DS’s in Chapter 3. Our further treatment of several systems
is not uniform, since their applicability in modal logic, and relationship to
ND systems is not equal, and these are our fundamental criteria of choice.

Axiom systems are still the most prevailing way of presentation of many
logics. Hence we used them in presenting classical and free logic, and we
will do it in case of modal logics, as well. But it is for reference only, as
axiom systems are not the subject of our consideration.

As far as the application to nonclassical logics, especially modal, is con-
cerned, sequent and tableau systems are the most important. Other types
of systems were not extended to other logics (like DP) or only in a limited
way (resolution, connection, refutation systems)12 Obviously, the paucity

12In case of resolution calculi this claim may be disputable. But we mean here the
so called direct resolution calculi for modal logics i.e. with no use of translation to e.g.
first-order logic, cf. Section 3.2.
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of application represent the actual situation only and by no means implies
that these systems are not good for that. Nevertheless, the actual situation
is an important factor and a main reason that we will treat sequent calculi
and tableaux in more detail than other kinds of systems.

On the other hand, resolution systems and Davis/Putnam system will
be also reviewed, as important for automated theorem proving. This field
is not particularly important for us in this work, however, if we want to
show universal and general character of ND, we cannot avoid completely its
discussion. We would like to show that even for aims of automation, ND, in
suitable version, may be as good as other popular systems. Moreover, the
obtained proofs may be more readable for humans.

We do not consider connection calculi, refutation systems and goal ori-
ented systems. Although some of them were used in the formalization of
some modal logics13 their construction cannot be easily compared with our
paradigm of a deductive system. In fact, this remark applies only to some
kind of refutation systems, based on the original idea of �Lukasiewicz, which
may be called refutation systems in the strict sense. Sometimes the name
refutation (or rejection) system is used in a more general sense covering also
some variants of tableau systems.

13One may mention here the works of Skura [258] and Goranko [113] concerning refu-
tation systems for modal logics, and the work of Wallen [278], where connection method
is applied.



Chapter 2

Standard Natural Deduction

This Chapter is devoted to the description of standard systems of natural
deduction (ND). After historical introduction in Section 2.1 we present some
preliminary criteria which should be satisfied by any system of natural de-
duction. Sections 2.3 and 2.4 develop a systematization of existing systems
based on two features: the kind of data used by a system and the format
of proof setting. As a result we divide traditional ND systems into F- and
S-systems (rules defined on formulae or sequents), and on L- and T-systems
(linear or tree proofs). The division is not exhaustive as there may be sys-
tems operating on other types of items (e.g. labelled formulae – cf. Chapter
8) The main conclusion of this part is that almost all of the known vari-
ants of ND may be traced back to the independent works of Jaśkowski and
Gentzen who started the investigation on non-axiomatic deductive systems.

Section 2.5 introduces ND system for CPL which will be used as a
basis for further modifications in the sequel. It is F- and L-system KM
developed by Kalish and Montague on the basis of Jaśkowski original ND.
We have chosen KM as the basic system because it is particularly useful
for our considerations and in many respects seems to be superior to other
known systems. Section 2.6 contains adequacy proof for KM; in particular
it lays down the general schema for proving soundness of all extensions of
KM in later chapters. Finally, we present an extension of KM to first-order
classical and free logic (with and without identity) with a discussion of the
most important alternatives. In particular, we introduce variants based on
Jaśkowski style rules and on Gentzen style rules, both in two formulations
using variables or parameters.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 28
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 2,
c© Springer Science+Business Media B.V. 2010
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2.1 Origins of ND

We would like to start with a brief history of natural deduction. In fact, the
historical remarks will also accompany more systematic treatment of ND in
further sections. It is not our intention to compete with the excellent and
very detailed account of these matters by Pelletier [205]. So we rather do not
repeat the information contained in his paper, except from the most basic.
Instead we provide some additional information, particularly in Sections 2.3
and 2.4. The pages devoted to the system of Gentzen from [110] and some
of his followers, as well as the remark on Suszko work [267], may help to
extend and complete the picture of the discipline.

1934 is commonly accepted as the first year in the history of non-
axiomatic deductive systems in general, and natural deduction systems in
particular. Two papers: of Jaśkowski [157] and Gentzen [109], published in
this year, are the fundamental publications on the subject. The name was
introduced by Gentzen; Jaśkowski used the term “composite system” in con-
trast to Hilbert axiomatic “simple system”. ND systems were constructed
independently by these two logicians as formal realizations of traditional
means of proving theorems in mathematics, science and ordinary discourse.
Since then, several variants of ND were devised and presented in hundreds
of logic textbooks, giving an evidence that ND systems are commonly ac-
cepted as the most efficient way of teaching logic. Still, simplifying a bit,
but truly indeed, we may say that everything sofar constructed in the field
of ND and the related systems is based, more or less directly, on the ideas
developed by these two researchers.

According to many authors, the origins of ND, recognized as a man-
ner of deduction based on arbitrary assumptions and application of sim-
ple, self-evident rules, should be traced back to Ancient Greece. One can
mention e.g. the discussion between Corcoran and �Lukasiewicz, concern-
ing the interpretation of Aristotle’s syllogistic. Corcoran [73] claimed that
�Lukasiewicz in [180] mistakenly interpreted syllogistic as an axiomatic sys-
tem, and proposed an interpretation in terms of inference rules and proofs
from assumptions. One can also look for the genesis of ND system in Stoic
logic, where many researchers (like Mates [187]) identify a practical appli-
cation of Deduction Theorem. But all these examples, even if we agree with
the arguments of logic historians, are only examples of using some proof
techniques. There are no traces of theoretical interest in their justification,
so we should agree that Jaśkowski and Gentzen are the inventors of ND.

Jaśkowski was somewhat influenced by �Lukasiewicz, who posed on his
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Warsaw seminar in 1926 a problem: how to describe, in a formally proper
way, proof methods applied in practice by mathematicians (cf. Woleński
[283]). Hilbert’s proof theory already offered high standards of precise for-
malization in terms of axiom systems. But the process of actual deduction
in Hilbert calculi is usually complicated and needs a lot of invention, also,
the ready proofs are lengthy, difficult to decipher, and far from informal
arguments produced by means of commonly used techniques like condi-
tional proof, indirect proof, proof by cases. In consequence, axiom systems,
although theoretically satisfying, were considered by many researchers as
practically inadequate and artificial. Hence, two goals were involved in
�Lukasiewicz’s idea: first, theoretical justification of traditional proof meth-
ods on the ground of modern logic; second, formally correct and practically
useful system of deduction.

In response to �Lukasiewicz’s problem, Jaśkowski presented his first re-
sults on ND in 1927, at the First Polish Mathematical Congress in Lvov,
mentioned in [156]. Final solution was offered in [157] because Jaśkowski
had a lengthy break in his research due to illness and family problems.
Gentzen published the first part of his famous paper also in 1934, but the
first results are present in [108]. This early paper, however, is concerned not
with ND but with the first form of sequent calculus. Gentzen was influenced
by Hertz [129], where a tree-format notation for proofs, as well as the notion
of a sequent were introduced.

It should be of no surprise that the two logicians with no knowledge of
each other’s work, independently proposed quite different solutions to the
same problem. The need for deduction systems of this sort was in the air.
In fact, one can mention other efforts in this respect. It is worth saying that
ND-like rules were practically applied in the twenties by many logicians
from Lvov-Warsaw School like Leśniewski, Salamucha, Tarski, as is evident
from their papers.

In particular, the introduction of deduction theorem into the realm of
modern logic seems to be one of the most important steps in this direc-
tion. Although Herbrand has proved it formally for axiomatic systems in
1930 [127], it was stated by him already in [126]. At the same time Tarski
included DT as one of the axioms of his Consequence Theory in [272]; in
practice he has used it since 1921. All these results may be seen as the
first bridge between the theory and practice, finally realized by Jaśkowski
and Gentzen. But what kind of deductive systems were exactly proposed
by these two logicians? They were not identical; in fact, each of them has
offered essentially two different systems that gave an impact to creation of
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a great variety of systems nowadays called natural deduction. Before de-
scribing some types of ND, and in particular showing their origins in papers
of Jaśkowski and Gentzen, we should try to delimit a scope of the family of
ND-systems.

2.2 Preliminary Characterization

It seems that there is no precise definition of ND-systems that would be
generally accepted. The term is often used in a very broad sense, so that it
covers almost everything which is not an axiom system. Some authors use
to say that Gentzen’s sequent calculus is ND-system, or that several forms
of tableaux are natural deduction. All these systems are actually in close
relationship, but here this notion is taken in a narrow sense. There are at
least three reasons to make such a choice:

• Historical. Original ideas of Gentzen, who in [109] introduces two
systems: NK (Natürliche Kalkül) and LK (Logistiche Kalkül). The
former is just ND system, whereas the latter, which is a sequent calcu-
lus, is meant as a technical tool to prove some metatheorems on NK,
not as a kind of ND.

• Ethymological. ND is supposed to reconstruct, in a formally proper
way, traditional ways of reasoning (cf. remarks on �Lukasiewicz’s sem-
inar problem in the preceding section). It is disputable if existing ND
systems realize this task in a satisfying way, but certainly systems like
TS or SC are worse in this respect.

• Practical. Taking a term ND in a wide sense would be classifying
operation of doubtful usefulness. From the point of view of our task
it is more convenient to use more fine-grained concept.

But what do we mean by ND in a narrow sense? Pelletier [205] shows
that some of the proposed definitions are too strict since they exclude some
systems usually treated as ND. It is better not to be very demanding in
the preliminary characterization. Informally, we treat as ND-system any
deductive system satisfying at least 3 criteria:

• There are some means for entering assumptions into a proof and also
for eliminating them. Usually it requires some bookkeeping devices
for indicating the scope of an assumption, and showing that a part of
a proof depending on eliminated assumption is discharged.
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• There are no (or, at least, very limited set of) axioms, because their
role is taken over by the set of primitive rules for introduction and
elimination of logical constants which means that elementary infer-
ences instead of formulae are taken as primitive.

• Genuine ND system admits a lot of freedom in proof construction and
possibility of applying several proof search strategies, like conditional
proof, proof by cases, proof by reductio ad absurdum e.t.c.

This is a very broad characteristics and, as we will see, it allows a lot of free-
dom in concrete realizations. Some authors (c.f. [20] or [205]) formulated
additional conditions, but in our opinion these 3 are essential. The main
point is that real ND-system should be open for different proof construc-
tions. The user is free in constructing direct, indirect or conditional proofs.
He may build more complex formulae or decompose them, as respective
introduction/elimination rules allow. Instead of using axioms or already
proved theses, he is rather encouraged to introduce assumptions and derive
consequences from them (although the presence of axioms is permitted).
This flexibility of proof construction in ND is in striking contrast to other
types of deductive systems usually based on one form of proof.1

Many existing systems satisfy this loose characteristics but differ in many
other respects – Pelletier describes nine such points of choice. Many of these
differences are superficial, but not all, so it is reasonable to distinguish some
types of ND, provisionally mentioned in Chapter 1. In our opinion the most
important differences – at least on the propositional level – are two:

• The kind of basic items (data structures) on which inference rules are
defined.

• The overall format of proof representation.

The first distinction occurs on the level of a calculus, the second, on the
level of its realization. In short: proofs in ND-systems are settled down
generally as trees (tree- or Gentzen-format or T-system, see [109]) or se-
quences (linear- or Jaśkowski format or L-system, see [157]), basic items of
these proofs (nodes of proof-tree) may be formulae (F-systems), sequents
(S-systems), sets of formulae (generalized clauses) or other structured data
(e.g. formulae with labels). We take a historically oriented look at some of
these distinction to show their advantages and disadvantages.

1This is why we do not treat sequent calculi and tableau systems as examples of natural
deduction systems. In ordinary SC we have only cumulative proofs and introduction rules,
in tableau systems only indirect proofs and elimination rules.
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2.3 Data Structures

2.3.1 F-Systems

The first ND systems were F-systems, i.e. their rules were defined on formu-
lae as basic items. In Chapter 1 we have mentioned that in ND-systems of
this sort one has two types of rules: rules of inference and proof construction
rules. The former have the form Γ/ϕ; we read them as follows: if we have
all formulae from Γ in the derivation we can add ϕ to this derivation. By
derivation we mean an attempted proof, i.e. unfinished tree or sequence.

In ND-system we also need some proof construction rules that allow us to
build a proof, enter additional assumptions opening nested subderivations,
and show under what conditions we may discharge these assumptions and
close the respective subderivations. For systems considered they have a
general form:

if Γ1 � ϕ1, ...,Γn � ϕn, then Δ � ψ.

In this schema the antecedents refer to subderivations which, if completed
(ϕi is inferred from Γi, i ≤ n), give a justification for ψ on the basis of
Δ. Typical proof construction rules are meant to formalize the old and well
known proof techniques like conditional proof, indirect proof, proof by cases
e.t.c.

This preliminary characterization applies equally well to Jaśkowski’s and
to Gentzen’s system from [109]. On the level of calculus both systems are
similar; in Jaśkowski system, formulated in implicational-negational lan-
guage, we have the following propositional rules2:

(→ E) ϕ,ϕ→ ψ / ψ
[→ I] if Γ, ϕ � ψ, then Γ � ϕ→ ψ
[¬E] if Γ,¬ϕ � ⊥, then Γ � ϕ

Here (→ E) is the only inference rule letting for deduction of new formulae
from the old ones,3 whereas [→ I] and [¬E] are proof construction rules for-
malizing traditional forms of conditional proof and indirect proof. Jaśkowski

2Note that Jaśkowski did not use ⊥, so it is present in the formulation of rules as a
metalinguistic sign of inconsistency. Also the names of rules are not original; he just used
on the level of realization names like: rule I, rule II, . . .. Note that in general we do not
use the original names of rules from described systems since several authors either use
different notation for the same things or the same names for different things.

3In rules of elimination like (→ E) we will ocassionaly use traditional distinction
between major premise which contains eliminated constant, and minor premise.
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proposed also modifications of his calculus leading to weaker propositional
logics, namely, he has observed that the last rule may be weakened:

[¬I] if Γ, ϕ � ⊥, then Γ � ¬ϕ

This form yields ND formalization of Kolmogorov’s version of intuitionistic
logic, whereas deletion of any rule for ¬ captures positive logic.4 By the end
of his paper he also considered proper rules for conjunction and proposed
the following:

(∧I) ϕ,ψ / ϕ ∧ ψ
(∧E) ϕ ∧ ψ / ϕ and ϕ ∧ ψ / ψ

Gentzen’s ND system NK (Natürliche Kalkül) from [109] has [¬I] and the
same rules for → and ∧. Additionally he considered further rules for ¬ and
rules for ∨:

(¬E) ϕ,¬ϕ / ⊥ and ⊥ / ϕ
(∨I) ϕ / ϕ ∨ ψ and ψ / ϕ ∨ ψ
[∨E] if Γ, ϕ � χ and Δ, ψ � χ, then Γ,Δ, ϕ ∨ ψ � χ

Although we have in fact three rules for ¬, the calculus is adequate for intu-
itionistic logic. Gentzen himself obtains formalization of CPL by addition
of the law of excluded middle ¬ϕ ∨ ϕ as a sole axiom, although he noted
that one may use for that aim a rule of inference:

(¬¬E) ¬¬ϕ / ϕ

But this rule was not in harmony with his basic requirement to have a pair
of rules (introduction-elimination) for each constant.

One should note one more thing concerning generally the calculus of any
F-system. In order to have a complete formalization of CPL or any other
logic, we must assume that it contains two more rules:

(A) ϕ / ϕ
[TR] if Γ � ϕ and Δ, ϕ � ψ, then Γ,Δ � ψ

These rules are implicit in any form of realization of F-system. (A) justifies
introduction of assumptions to a proof, [TR] is a form of cut justifying the
very process of deduction of the last formula from assumptions.

4Jaśkowski formulated also ND system for propositional logic with quantifiers.



2.3. DATA STRUCTURES 35

2.3.2 S-Systems

The differences in the set of rules proposed by Jaśkowski and Gentzen are
not sufficient to maintain that they represent two different approaches to
ND. The deep difference beetwen their systems lies on the level of realization
and will be discussed in the next section. But one, more serious, difference
appears also on the level of calculus if we take under consideration the next
ND system of Gentzen [110].

Let us recall that rules of ND systems may be defined not only on for-
mulae but also on other items, e.g. on sequents (S-systems). The first ND
S-system should not be identified with sequent calculi of the sort described
in the next Chapter. The latter (Gentzen’s LK – Logistiche Kalkül – from
[109]), uses only introduction rules for constants (but defined both for an-
tecedent and succedent – cf. Chapter 3), whereas the former, also due to
Gentzen, is essentially ND system since it has both introduction and elimi-
nation rules (but usually only in the succedent; antecedent simply displays
active assumptions). So it is a kind of a compromise between his own NK
and LK systems. Although the first such system was officially introduced
by [110] in fact it was already present implicitly in the proof of adequacy of
NK in [109]. Gentzen proved adequacy by showing equivalence of NK with
axiom system by means of his sequent system LK. One part of the proof
shows how to transform each NK proof into LK proof. In order to do that
Gentzen rewrites each rule in such a way that it has an added record of all
active assumptions. In [110] the system is defined in such a way just from
the beginning. In its propositional part (the whole system has also rules for
quantifiers and Peano arithmetic) it has one sequent (AS) ϕ⇒ ϕ regulating
introduction of assumptions, and the following rules for CPL5:

(WS) Γ ⇒ ϕ / ψ,Γ ⇒ ϕ
(∧IS) Γ ⇒ ϕ; Δ ⇒ ψ / Γ,Δ ⇒ ϕ ∧ ψ

(∧ES) Γ ⇒ ϕ ∧ ψ / Γ ⇒ ϕ and Γ ⇒ ϕ ∧ ψ / Γ ⇒ ψ
(∨IS) Γ ⇒ ϕ / Γ ⇒ ϕ ∨ ψ and Γ ⇒ ψ / Γ ⇒ ϕ ∨ ψ

(∨ES) Γ ⇒ ϕ ∨ ψ; ϕ,Δ ⇒ χ; ψ,Λ ⇒ χ / Γ,Δ,Λ ⇒ χ
(→ IS) ϕ,Γ ⇒ ψ / Γ ⇒ ϕ→ ψ

(→ ES) Γ ⇒ ϕ; Δ ⇒ ϕ→ ψ / Γ,Δ ⇒ ψ
(¬IS) ϕ,Γ ⇒ ψ; ϕ,Δ ⇒ ¬ψ / Γ,Δ ⇒ ¬ϕ

(¬ES) Γ ⇒ ¬¬ϕ / Γ ⇒ ϕ

5In fact, Gentzen defined antecedents of sequents rather as lists of formulae, so he
needs also a rule of permutation and contraction for elements of antecedents.
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There is a clear correspondence between inference rules of F-system and
rules of S-system. Every rule of the form:

(Rule) ϕ1, ..., ϕk / ψ

may be changed into:

(RuleS) Γ1 ⇒ ϕ1, ..., Γk ⇒ ϕk / Γ1, ...,Γk ⇒ ψ

The correctness of this operation is justified by k applications of cut on a
sequent representing (Rule) and sequents being premises of (RuleS). One
may note that all rules of Gentzen’s S-system may be derived from his
F-system.

The relationship between proof construction rules and the respective
rules of S-system is even more straightforward. One may observe that in S-
system we do not need to distinguish a category of proof construction rules;
they are just represented by rules operating on sequents, e.g. (→ IS) is a
counterpart of [→ I] e.t.c. Only (∨ES) slightly departs from this scheme,
probably because Gentzen wanted to avoid a rule with explicit introduction
of a constant in the antecedent. In fact, there is some subtle difference
between proof construction rules in F-systems and their counterparts in S-
systems concerning interpretation of sets Γ,Δ. In S-system an antecedent
of Γ ⇒ ϕ is always a set of active assumptions of ϕ, whereas in F-system
it is not necessarily so. Γ in Γ � ϕ is meant as a set of (not necessarily
all) formulae from which ϕ is deduced; so they may be not only active as-
sumptions of ϕ but also some formulae which were deduced from them. In
case we have some formula displayed before � as an additional assumption
of a subproof, Γ is just a set of all formulae which are accessible for further
inferences at the moment when this assumption was introduced. This is
important to note because it would be difficult to state suitable rules for
modal logics (cf. Chapter 6) if we restrict Γ only to the record of assump-
tions. Clearly, one may introduce more accurate notation having separate
symbols for assumptions and for other formulae6 but for our purposes it is
not necessary. Only in case of some rules for quantifiers the restriction to
assumptions is important but it may be stated in side conditions.

Anyway, the difference in reading Γ-s in both systems is not an obstacle
for seeing a deep similarity of the rules in both approaches. The relationship
between these two types of ND shows that on the level of a calculus we may

6This is, for example, a solution of Dyckhoff in [81] with H denoting hypotheses (as-
sumptions) and F denoting facts, i.e. assumptions and formulae inferred from them.
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obtain a uniform characterization of both F- and S-systems, if we admit that
every ND system consists of sequents and sequent rules.7 In this perspective
the difference is in the interpretation of constituents and in their proportion.
In F-system sequents correspond to inferences and sequent rules to proof
construction; in S-system sequent rules are just inferences.

Note that one may obtain S-system based on the calculus given for F-
system in a slightly different way. We may directly use all inference rules of
F-system as starting sequents (assumptions). If we take a full set of rules
of Gentzen’s F-system, the new S-system would consists of many starting
sequents instead of one (AS), and of only a few rules. The calculus of
Jaśkowski’s system, if treated as a kind of S-system, would contain two
sequents: (AS) and (→ ES) ϕ,ϕ→ ψ ⇒ ψ, and three sequent rules:

(→ IS) Γ, ϕ⇒ ψ / Γ ⇒ ϕ→ ψ
(¬E′

S) Γ,¬ϕ⇒ ⊥ / Γ ⇒ ϕ
(Cut-ND) Γ ⇒ ϕ ; ϕ,Δ ⇒ ψ / Γ,Δ ⇒ ψ

Note that except original rules of suitable F-system we must explicitly add
(AS) and a form of cut. The last rule is necessary in such S-system to
cover transitivity of deductions which in F-system is covered by implicit
rule [TR]. S-system of this sort (many sequents, few rules) was proposed
in 1940s by Suszko [267], although with different set of sequents and with
only structural rules of cut, weakening, contraction and permutation. Such
S-systems are not very popular however; one may find rather several ND
systems more similar to original Gentzen’s system, with many rules. One of
the first is implicitly present in influential Kleene’s textbook [162], although
he introduced a complete set of rules for classical logics not as an indepen-
dent system but as an enrichment of an axiom system with derivable rules.
Various systems of this sort may be found e.g. in [234] and [82]. Particularly
interesting is a variant of S-system due to Hermes [128] because it contains
rules for introduction and elimination of constants also in antecedents of
sequents which makes it a kind of syntactic hybrid of sequent ND and or-
dinary sequent calculus. The richness of its deductive apparatus is clearly
connected with practical orientation of this system. Original system of this
sort representing purely theoretical interests is provided by von Plato and
Negri [193], where only the rules of elimination from both antecedents and
succedents are provided. This hybrid of SC and ND is obtained via the
analysis of normalization proof.

7Similar way of description is in Wójcicki [285], where every deductive system consists
of axioms, H-rules (i.e. sequents) and G-rules (i.e. sequent rules).
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Sequential character of some ND systems is sometimes obscured; in the
next section we will describe a system of Suppes which is usually treated as
a kind of F-system.

2.4 Trees or Sequences?

2.4.1 Problems with Trees

The description of rules on the level of calculus is rather insensitive to the
format of proof. F-systems of Jaśkowski and Gentzen are not much different
in this respect, however, they differ in realization: Jaśkowski proposed sys-
tems with linear proofs (L-system), whereas Gentzen’s NK uses tree proofs
(T-system).

The distinction between tree- or linear-format ND-systems bears little
theoretical import as binary tree can be redefined as a sequence.8 Nonethe-
less in practice it does matter since in L-systems we deal with formulae,
whereas in T-systems we deal with their concrete occurrences. As we may
use the same formula many times in L-proof, we must have some devices for
cancelling the part of a proof which lies in the scope of an assumption al-
ready discharged. Otherwise, we could “prove” everything – the well known
phenomenon to all teachers of introductory courses in logic.

All this is not possible in tree-proofs. As we are operating not on formu-
lae but on their single occurrences, every leaf of a proof tree is an assumption
and the root is a formula to be proved. Transitions between nodes corre-
spond to elementary inferences, and premises of any application of a rule
must always be displayed directly above the conclusion. Consequently, we
cannot use in a proof anything that depends on discharged assumptions,
because the part of a proof responsible for deduction of a formula must be
reproduced above. Hence Gentzen did not have to bother about technical
devices to block nonvalid deductions. Tree format requires less complicated
machinery and as such is very handy in representing ready proofs – the
structure of inferential dependencies is readably represented. No wonder
that in works concerned with theoretical investigations this format is very
popular (good witness is Prawitz [220]).

As it is often the case, a feature attractive on the one hand, is the
source of problems, on the other. Although trees clearly show the structure
of completed proofs, they are hardly suitable for actual derivation. Mental
process of proof construction has rather a linear structure; we start with

8Cf. e.g. an algorithm in Chapter 4.
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assumptions and deduce conclusions until we get the desired goal. Gentzen
himself was well aware of this fact when he wrote that “we are deviating
somewhat from the analogy with actual reasoning. This is so, since in actual
reasoning we necessarily have (1) a linear sequence of propositions due to
the linear ordering of our utterances, and (2) we are accustomed to applying
repeatedly a result once it has been obtained, whereas the tree form permits
only of a single use of a derived formula.” ([109] citation from [268, page
76])

According to Gentzen, however, this form of representation is simpler
and resulting deviations are inessential. On the other hand, despite the
above mentioned inconvenience, Jaśkowski decided to use linear format as
much closer to actual reasoning, and much more useful for actual proof-
search.

The choice of proof format has also some computational advantages; we
can show that for each proof D in tree format we can provide linear proof D′

such that the length of D′ is the same or smaller than the length of D. The
converse does not hold because in tree proofs we work with occurrences of
formulae when in linear proofs we work with formulae themselves. It forces
us to repeat many times the same proof-trees if their starting assumptions
are used several times. Consider, e.g. any thesis of the form ϕ → (ψ →
χ1 ∧ . . .∧χn), where ϕ = (ϕ1 ∧ (ψ∧ϕ1 → χ1))∧ . . .∧ (ϕn∧ (ψ∧ϕn → χn)).

General schema of a tree proof looks as follows:

D1 Dn

χ1 · · · · · · χn
χ1 ∧ · · · ∧ χn

ψ → χ1 ∧ · · · ∧ χn
ϕ→ (ψ → χ1 ∧ · · · ∧ χn)

For simplification we assumed the generalized form of (∧I) by which we can
deduce n-ary conjunction from n premises in one step. Every Di(1 ≤ i ≤ n)
represents a proof of χi and has the following form:

[ϕ]
ϕi ∧ (ψ ∧ ϕi → χi) [ϕ]

[ψ] ϕi ϕi ∧ (ψ ∧ ϕi → χi)
ψ ∧ ϕi ψ ∧ ϕi → χi

χi

[ψ](and [ϕ]) means that an occurrence of an assumption ψ (ϕ respectively)
is being discharged in effect of application [→ I] in the last line of our proof.
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It is clear that in the tree proof we have to assume ψ n-times and ϕ even 2n-
times which is necessary to derive each χi. On the other hand, in Jaśkowski
format linear proof we are forced to assume both ϕ and ψ only once and use
them repeatedly which simplifies greatly the representation of proof (see an
example in Section 2.5.3).

To the best of my knowledge no results were obtained showing how much
computationally worse are tree ND-proofs in comparison to linear ones. One
can compare this with the situation in other types of deductive systems.
For axiom systems, Krajicek [168] has shown that linear proofs may be p-
simulated by tree proofs, but for resolution it is known (e.g. [26]) that linear
representation is even exponentially more efficient than refutations in tree
form. It is an open question whether ND is closer to axiom systems or to
resolution in this respect, but it is obvious that the ability to reuse formulae
in a proof leads to shorter proofs.

2.4.2 Problems with Linear Proofs

On the other hand, and exactly for the same reason, linear proofs have
scoping difficulties and require some kind of bookkeeping devices for sepa-
rating the parts of proof which are in the scope of discharged assumption
(not available). This is the case of rules, as [→ I] or [¬E], that are not
inference rules but proof construction rules. As such, they show that if
some proof is being constructed on the basis of some assumption, then, in
the effect, we obtain another proof in which this assumption is not in force.
Thus a linear proof admitting additional assumptions and means for closing
dependant parts of a proof is, in fact, not a simple sequence of formulae
but rather a richer structure containing nested subderivations (subordinate
proofs). Precise definitions will be provided later in Section 2.5.3.

There are many techniques devised for several ND-variants from logic
textbooks for dealing with this problem. Basically, all of them are some vari-
ations of two solutions introduced by Jaśkowski. The first original Jaśkowski
solution of the problem consisted in making boxes for each assumption and
the dependent part of a proof. Every introduction of an assumption was
connected with starting a new box, and this assumption was always put as
the first formula in it. An application of any proof construction rule was
connected with closing a current box, and the inferred formula was immedi-
ately put as an element of outer derivation. He also used an additional rule
of repetition to shift a formula from outer open box to the inner one; the
transition in the other direction was of course forbidden. Schematically, the
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application of both proof construction rules in his system looks as follows:

Γ Γ
ϕ ¬ϕ
Γ′ Γ′
...

...
ψ ⊥

ϕ→ ψ ϕ

In the diagrams possibly empty Γ′ ⊆ Γ refers to formulae obtained by
repetition.

In publication Jaśkowski applied (perhaps due to editorial problems) an
apparatus of numeric prefixes, instead of boxes. These are finite sequences
of natural numbers separated with dots and written before each formula in a
proof, except a thesis. Each time we enter an assumption we extend prefix
with additional number9; each application of [→ I] or [¬E] is connected
with subtraction of the last number in the prefix. Application of inference
rules, like (→ E) is admitted only if prefixes of both premises are initial
parts or are identical to the prefix of the last formula in a proof (prefix
of a conclusion must be identical to it). In this way Jaśkowski avoided
the introduction of repetition as a rule. Jaśkowski thought of prefixes as
indicators of domains in which formulae with this prefix are valid. Thus
formulae with empty prefixes are ordinary theses, and those with nonempty
prefixes are theses relative to some domain in which some suppositions are
postulated as valid. Prefixes are then records of dependency of a formula
on assumptions in the context of a proof.

Incidentally, the innovation introduced by Jaśkowski (i.e. prefixes) may
be classified in different way, especially if we take into account his philo-
sophical motivations (borrowed from Leśniewski) concerning the dynamic
nature of a deductive system. In brief: a prefix is seen as a domain where
assumptions connected with this prefix and with each of its subprefixes are
believed to be valid; every prefixed formula is a thesis of this domain. In
this perspective, we may treat his second version as the first example of ND
defined not on formulae but on labelled formulae!

Below we illustrate both versions with an example of a proof.

9Additionally Jaśkowski has used a prefix S (from supposition) in front of any assump-
tion.
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1 p ass. 1 1.Sp ass.
2 ¬¬¬p ass. 2 1.1.S¬¬¬p ass.
3 p (1, rep.) 3 1.1.1.S¬¬p ass.
4 ¬¬p ass. 4 1.1.¬p [2, 3,¬E]
5 ¬¬¬p (2, rep.) 5 1.¬¬p [1, 4,¬E]
6 ¬p [4, 5,¬E] 6 p→ ¬¬p [→ I]
7 ¬¬p [3, 6,¬E]
8 p→ ¬¬p [→ I]

Despite the apparent differences, both Jaśkowski systems have one thing
in common – the essential idea of dividing a proof into separated and par-
tially ordered subproofs. It appears as the most popular solution in hun-
dreds of textbooks where ND-techniques are applied. His first version, al-
though abandoned by the author himself, is much more popular nowadays.
It has many variants but there is always some graphic device added to lin-
ear sequence of formulae in a proof. Original format of boxes was used by
Kalish and Montague [159]), but with some adjustments, introduced ear-
lier in [158], which make their system one of the most flexible in practice.
Simplified account, where each assumption is entered with the vertical line
which continues until this subproof is in force, is due to Fitch [89], whereas
popular system of Copi [72] applies bracketing to closed subproofs. The
second solution of Jaśkowski is not so popular in ND setting. Borkowski
and S�lupecki [54] in their ND system followed this route but also with some
simplifications; prefixes are mixed together with the numbers of lines of the
proof.

Such ND systems are commonly called Fitch-style ND, however here
we will reserve for them historically more appropriate name, i.e. ND in
Jaśkowski’s format.10 Since in this approach parts of proof are separated, it
proved especially useful with respect to many nonclassical logics formalized
via ND systems. In what follows, we will present in detail some solutions
for modal logics which are hardly realizable without assuming Jaśkowski
format.

10It must be said that Jaśkowski was not as lucky as Gentzen, whose contribution into
development of proof methods is widely known. There are a lot of books and papers using
some variant of ND in Jaśkowski format but crediting it to Fitch or to Gentzen.
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2.4.3 Suppes’ Format

Finally we turn to the problem of realization of S-systems of ND. Gentzen
himself in [110] adopted tree proofs, exactly as in NK. But S-system may
be realized in the linear format, as well, as was noticed by some of his
followers (e.g. Hermes [128]) Moreover, in the linear format it is even more
advantageous than in Jaśkowski format requiring bookkeeping devices to
indicate dependence of a formula on assumptions. It is so because we are
operating on sequents where each formula (succedent) has a record of its
assumptions (antecedent) and there is no risk of performing deductions on
the basis of discharged assumptions. This system turned out to be very
influential in the field of applied ND systems thanks to Suppes’ modification
[266]. In his ND systems we apparently operate on formulae not on sequents,
because instead of antecedents we simply write down numbers of lines where
suitable assumptions appeared for the first time. This device was originally
introduced by Feys and Ladriere in their French translation [86] of Gentzen
[109]. In Suppes’ version, popularized by Lemmon [174], it appeared in
many textbooks on logic. So to avoid confusion with Gentzen’s original F-
system but with tree proofs, we will call such an approach, ND in Suppes’
format. One should add that there are also ND L-systems operating on
explicit sequents, and even using rules defined on antecedents, e.g. Hermes
[128].

Below we give some example of proof in Suppes’ format:

{1} 1 p→ q ass.
{2} 2 r → q ass.
{3} 3 p ∨ r ass.
{4} 4 p ass.
{1, 4} 5 q (1, 4,→ ES)
{6} 6 r ass.
{2, 6} 7 q (2, 6,→ ES)
{3, 1, 2} 8 q (3, 5, 7,∨ES)
{1, 2} 9 p ∨ r → q (8,→ IS)
{1} 10 (r → q) → (p ∨ r → q) (9,→ IS)

11 (p→ q) → ((r → q) → (p ∨ r → q)) (10,→ IS)

Let us noticed by the way that Pelletier [205] in his historical and sys-
tematical account of ND has omitted the second system of Gentzen, conse-
quently crediting such a kind of system to Suppes. He is certainly right that



44 CHAPTER 2. STANDARD NATURAL DEDUCTION

ND in Suppes’ format is really different from Jaśkowski’s prefixes because
of the reasons we discuss in the sequel. Certainly Suppes was also unaware
of Gentzen’s S-system when creating his own (e.g. his rules for quantifiers
significantly differ from Gentzen’s rules), but from the taxonomical point of
view it is in fact the same approach!

Apparently, the solution of Suppes resembles more the second system
of Jaśkowski, but there is a big difference between them. In Jaśkowski’s
approach any two formulae from neighbour-lines may have only the same
prefix or one digit longer or smaller, because subproofs are not only sep-
arated but also ordered – that is the very idea of subordinated proofs. In
Suppes’ format in neighbour-lines we may have formulae depending on dif-
ferent sets of assumptions, because the order of assumptions plays no role
in this approach. So, a proof is not divided into separated subproofs but is
really a linear sequence of sequents. That is why in [144] ND in Jaśkowski’s
format was called an ordered assumptions approach, and linear S-systems
were called a recorded assumptions approach.

This difference may have strong impact on the length of proofs. In
Jaśkowski format all formulae deduced inside a current subderivation are
treated as dependent on its assumption (and all assumptions of outer open
derivations), even if this assumption was not actually used in their deduc-
tion. In consequence, after closing this subproof, all formulae in it are un-
available, even if they are not really dependent on discharged assumption.
This may lead to repetition of deduction of formulae that were deduced be-
fore. In Suppes’ format there is no danger of such repetitions since there is
no isolation of subproofs, and for each formula we have a record of its real
assumptions.

So not only bookkeeping devices can be dispensable with in the latter
format, but also, in some sense, this approach allows for more flexibility in
carrying actual derivations than Jaśkowski’s approach, at least in case of
classical logic. For modal logics the situation is different as the prevailing
technique of formalization due to Fitch is essentially based on the explicit
isolation and hierarchization of subproofs (cf. Chapter 6). One may also
diminish the risk of repetition of the same inferences in Jaśkowski’s format
by introducing secondary inference rules. The redundancy of inference rules
usually helps to decrease the number of necessary additional assumptions
(and subderivations).

Following the tracks of both Jaśkowski and Gentzen on the development
of proof methods, we cannot forget about the possibility of mixing different
techniques. A good example is Anderson and Belnap’s ND system for rele-
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vant logics (cf. [5]). It is basically a system in Jaśkowski’s format (Fitch’s
lines for subproofs) but formulae are indexed in the way which make them
essentially Suppes’ quasi-sequents. Such a “hybrid” technique makes pos-
sible controlling relevancy conditions. Also prefixed analytic tableaux of
Fitting [93] for modal logics may be treated as mixing Smullyan’s tree sys-
tem with Jaśkowski’s device of prefixing each formula. We will say more
about this in Chapter 8 but one remark is in place here, namely, these ex-
amples show that a distinction between a sequent and a labelled formula is
not sharp. Formally, in Suppes’ and in Anderson/Belnap’s ND we have for-
mulae decorated with the sets of natural numbers. For this reason Gabbay
[99] treats such a solution as one more example of application of labels (cf.
Chapter 8)

To summarize the above historical-taxonomical considerations let us
conclude that Jaśkowski and Gentzen laid down the foundations for further
investigations of ND but in a slightly different fashion. Jaśkowski seemed to
be more concerned with the practical aspects of deduction and his general
approach as well as his technical solutions are of common classroom and
textbook use. On the other hand, Gentzen was more theoretically oriented;
his investigations led him to profound results in general proof theory. Some
special approach to applied ND is rather a by-product of his later paper
[110].

2.5 System KM

2.5.1 Rules

In this section we describe our official ND system for CPL that will be
the point of reference in the subsequent investigations. We prefer to use
Jaśkowski format (F- and L-system) because it is much more convenient for
modal and other nonclassical logics. Presenting a calculus we follow quite
closely the mode of presentation from Fitting [95] with his uniform compact
notation. Our standard ND calculus for CPL consists of:

1. Inference rules

(αE) α / αi, where i ∈ {1,2}
(αI) α1 , α2 / α
(βE) β , −βi / βj , where i �= j ∈ {1,2}
(βI) βi / β , where i ∈ {1,2}
(⊥I) ϕ, −ϕ / ⊥
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(⊥E) ⊥ / ϕ
(¬¬) ¬¬ϕ // ϕ

2. Proof Construction rules

[COND] If Γ,−β1 � β2, then Γ � β
[RED] If Γ, −ϕ � ⊥, then Γ � ϕ

Note that the set of rules is highly redundant. It is common practice in ND
(due to Gentzen) that for theoretical purposes each constant is characterized
in a unique way with a pair of rules to introduce and eliminate this constant
in a proof. The general schemata displayed above share both primitive
rules and many others which in standard systems are treated as derivable.
For example, conjunction is almost always11 characterized by the rules of
type (αI) and (αE) (cf. Section 2.3.1) but not by the rules of type β,
where conjunction is negated; such rules are in most cases introduced later
as derivable rules. On the other hand, disjunction and implication are
characterized rather by the rules of type β, but also in a different manner
for each constant; (βI) for implication is rather not applied being performed
via [COND] — and quite the contrary for disjunction. In the latter case a
suitable rule of elimination is very often not our (βE), which is a traditional
Modus Tollendo Ponens, but rather a proof construction rule [∨E] due to
Gentzen (cf. Section 2.3.1) which is a formalization of traditional “proof by
cases”. One may easily observe that [COND] covers classical [→ E] limited
to implications, whereas [RED] covers both [¬E] and [¬I].

In general, the proportion of inference rules to proof construction rules
may be different from the above. Theoretical reasons may lead to the in-
troduction of other proof construction rules – as in von Plato/Negri [193].
On the other hand, practical reasons may lead to their reduction, like in
the analytic version of ND presented in Chapter 4, where [RED] is the only
proof construction rule. Also [RED] may be eliminable in a system with
inference rules corresponding to double negation law and Modus Tollendo
Tollens, and these are already covered in our calculus by (¬¬) and general
form of (βE). In fact, Quine’s ND system [226] dispenses with indirect
proof using only [→ I].

In this book we are more concerned with utility than with theoretical
purity, so this redundancy is certainly not a drawback but an advantage.

11This remark applies to practically oriented ND; in systems constructed for the needs
of theoretical investigation other solution may work better, e.g. von Plato/Negri idea of
generalized elimination rules in [193] leading to smooth proof of normalization.



2.5. SYSTEM KM 47

We have already noted, when comparing Jaśkowski’s and Suppes’ formats
that a redundant set of rules may potentially reduce some complexities of
proof (defined below as the depth of a proof12). But there are also some
theoretical advantages. The redundant set of rules facilitates a comparison
and simulation of several deductive systems on the basis of ND. It is also
handy to have a rich basis and make modifications by elimination and/or
restriction of some rules; the possibility extensively investigated in Chapter
4. At this point one can also compare our calculus with remarks in [2]
concerning the treatment of negation in ND and in tableaux. Negation
in ND is not treated in symmetric way, as classical semantic features of
this constant seem to dictate. Gentzen’s rules give rather intuitionistic
characterization. As a result, proofs of some DeMorgan’s laws are not really
“natural” in ND. The introduction of rules operating on negated formulae
eliminates this inconvenience. Notice that even more redundant set of rules
may be obtained, if we admit more general form of [COND] covering also
conditional contrapositive proofs:

If Γ,−βi � βj , then Γ � β, where i �= j ∈ {1, 2}

In what follows this rule will be sometimes referred to as [COND], too.

2.5.2 Realization

As we already know, these rules may be realized in different ways, depending
on the variant of ND-system. We prefer a variant of Jaśkowski’s format
based on boxes since prefixes will be applied later to realize different goals
(cf. Chapter 8). In what follows we will apply, as our formal basis, a system
due to Kalish and Montague [159] (hence the name of the system). In KM
nested subproofs are also put into boxes for making clear which part of a
proof is active and which is not, but in a slightly refined way. The basic
innovation of KM consists in using two types of lines in a proof:

• Usable-lines (U-lines for short) being ordinary lines of a proof contain-
ing assumptions, premises, and conclusions of applied rules; formulae
occuring in U-lines are called U-formulae.

• Show-lines (S-lines for short) displaying formulae that one attempts
to prove; from now on called S-formulae.

12In Chapter 4 we will introduce some drastic modification of ND leading to “flat” (no
additional subderivations) proofs.
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Actually, the application of Show-lines is a distinctive feature of KM. Their
role may be compared to the function of queries in programming languages
like Prolog or SQL. Show-line displays a formula which is the current (sub)
goal of our derivation (i.e. at a given stage). Every S-line introduces a
new subderivation but it is not a part of it. Technically, Show-line is a
formula preceded with the prefix SHOW and it is introduced into every
derivation at least once. We put “SHOW:ϕ” always at the beginning of a
derivation of ϕ as the global goal of this proof, and we enter “SHOW:ψ”
also if we realize that ψ is what we need to complete the (current stage of
the) derivation; they are local goals (or subgoals). It is some β in case we
are trying to proceed via [COND], or any formula for [RED]. Thus one
may enter arbitrarily many show-lines, dividing the process of proving into
the realization of many simpler subgoals.

The part of a derivation beneath some S-formula will be called a subproof
if it is finished (i.e. boxed), or an open subderivation if yet unfinished. Thus
every open subderivation may contain U-formulae of this subderivation,
S-formulae (with their subderivations) and subproofs (boxes), whereas a
subproof may contain only formulae that were U-formulae before closing in
a box, and other subproofs (boxes). It is convenient to note the level of
nesting of every subderivation in the structure of the whole construction.
We will call this parameter a degree, formally:

Definition 2.1

• Part of a derivation starting after the first S-line is called a subderiva-
tion of the 1st degree.

• If S-formula is put immediately after U-formula belonging to sub-
derivation of degree n, then a subderivation introduced by this S-
formula is of n+ 1 degree.

We will say also about subproofs of degree n in case they are closed sub-
derivations of degree n. It is easy to observe that in one derivation there
may be a lot of independent subderivations of degree n > 1, whereas there
is only one subderivation of degree 1 and in case it is closed it is just a proof.
One of the possible measures of complexity of proofs is to count the num-
ber of all its subproofs. Another interesting measure is to count how many
subproofs are nested inside one another. We say that a proof is of depth k,
if the maximal degree of its subproof(s) is k. A current subderivation is this
part of a derivation where we actually add conclusions from the application
of inference rules.
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Assumptions are put down immediately after S-formulae as the next lines
(the first U-line of a given subderivation). Their introduction is regulated
by two rules (or rather instructions since the term “rule” is not used here
in the technical sense):

(a) if the last line is S-formula β, then we may add −β1 as a conditional
assumption of current subderivation

(b) if the last line is S-formula ϕ, then we may add −ϕ as an indirect
assumption of current subderivation.

The interesting thing is the way we complete (or close) subderivations in
KM. One must remember that S-formula is in a sense not a part of a deriva-
tion; it simply displays the immediate goal. We cannot use such a formula
as a premise of any inference rule but it can be turned into ordinary formula
if this goal is reached through some subsidiary derivation. There are two
such rules of closing a subderivation13:

[COND]: If β is an S-formula opening a subderivation and β2 has ap-
peared as an U-formula of this subderivation, then we can close it.

[RED]: If ⊥ has appeared as an U-formula in a subderivation, then we
can close it (in this case the shape of an S-formula is of no importance).

After completion of a subderivation it is boxed and the prefix is can-
celled (which looks like SHØW). In this way we make evident that the
attempted goal has been realized. From now on formulae in a box are not
available, on the other hand, a formula with cancelled prefix “Show:” is
not more an S-formula. If it was S-line opening k+ 1 degree subderivation,
then it would become the last U-formula of outer subderivation of k-degree.
Shortly, – S-formulae and boxed formulae are inactive but formula with
cancelled SHOW is active. Obviously, no subproof with noncancelled S-
lines can be completed. It means that within an open subderivation we can
start many new subderivations but all such nested subderivations must be
completed first. In fact, the formulation of rules forbids a closure of a sub-
derivation of k-degree if there are some S-lines in this subderivation because
each of them enters a subderivation of a degree> k. Hence, if the formula
required for closing a subderivation is in their scope it is not a U-formula

13For simplicity we keep the same names as for suitable rules in the calculus, but note
that “rules” from the level of realization correspond only partially to them; cf. Section
2.5.4.
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of this k-degree subderivation. In result, each initiated subgoal must be
realized before we finish the whole proof.

One may observe that a notion of U-formula as we used it before is
imprecise. Due to the dynamic character of proof construction in KM we
should rather say what is U-formula at some stage of a derivation. It may
be defined precisely as any formula which at this stage is neither S-formula
nor in a box. The set of U-formulae (S-formulae) of the whole derivation
(or some subderivaton) D at some stage will be designated by U(D) (S(D),
respectively). Notice that the number of formulae of U(D) and S(D) changes
as the derivation proceeds; every application of inference rule increases U(D)
while every application of [COND] or [RED] usually decreases U(D). It is
so because we are boxing the last subderivation and the only new element
of U(D) is the the last S-formula. We said “usually decreases” since it may
be that in the closed subproof there was only one U-formula; in such cases
an application of a proof construction rule does change U(D) but not its
cardinality. The use of both proof construction rules in KM may be rendered
by the following diagrams:

Γ Γ
i SHØW: β i SHØW: ϕ
i+ 1 −βi i+ 1 −ϕ

...
...

k βj k ⊥

where there is no show-lines in a box.

2.5.3 Derivations

Although we have introduced KM in rather informal way, paying atten-
tion rather to readability, the concept of a derivation and a proof may be
encountered with formal definition.

Definition 2.2 (Derivation of ϕ)

A. “SHOW:ϕ” is a derivation of ϕ

B. Let D be a derivation of ϕ, then:

1. “D⊕SHOW:ψ” is a derivation of ϕ

2. “D ⊕⊥” is a derivation of ϕ, provided {ψ,¬ψ} ⊆U(D)
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3. “D ⊕ ψ” is a derivation of ϕ, provided ¬¬ψ ∈U(D)

4. “D ⊕ ¬¬ψ” is a derivation of ϕ, provided ψ ∈U(D)

5. “D ⊕ αi” is a derivation of ϕ, provided α ∈U(D)

6. “D ⊕ α” is a derivation of ϕ, provided {α1, α2} ⊆U(D)

7. “D ⊕ βj” is a derivation of ϕ, provided {β,−βi} ⊆U(D)

8. “D ⊕ β” is a derivation of ϕ, provided βi ∈U(D)

9. “D ⊕−β1” is a derivation of ϕ, provided D = D′⊕SHOW:β

10. “D ⊕−ψ” is a derivation of ϕ, provided D = D′⊕SHOW:ψ

11. If D = “D′⊕SHOW:ψ⊕D′′⊕⊥” is a derivation of ϕ, then “D′⊕SHØW:ψ⊕
[D′′ ⊕⊥]” is a derivation of ϕ, provided S(D′′)=∅

12. If D = “D′⊕SHOW:β⊕D′′⊕β2” is a derivation of ϕ, then “D⊕SHØW:β⊕
[D′′ ⊕ β2]” is a derivation of ϕ, provided S(D′′)=∅

C. Nothing more counts as a derivation of ϕ.

D⊕D′ stands for the concatenation of two parts of a derivation, [D] means
that D is a subproof (is boxed); ψ denotes any formula, D′ and D′′ may be
empty sequences. Points 2.–8. state the conditions for the application of
inference rules, points 9. and 10. – for entering assumptions, points 11. and
12. – for closure of subproofs.

We are now in a position to define a proof of ϕ.

Definition 2.3 (Proof of ϕ) A derivation D of ϕ with S(D) = ∅ and
U(D) = {ϕ} is a proof of ϕ, otherwise a derivation is open.

It is easy to extend the definition of a derivation to cover also deducibil-
ity of conclusions from premises. It is enough to replace the phrase “a
derivation of ϕ” by “a derivation of ϕ from Γ” throughout all the definition
and formulate part A. as follows:

A’. “χ1 ⊕ ... ⊕ χk⊕SHOW:ϕ” is a derivation of ϕ from Γ, where Γ =
{χ1, ..., χk}



52 CHAPTER 2. STANDARD NATURAL DEDUCTION

Clearly in such a case the proof of ϕ from Γ has U(D) = Γ ∪ {ϕ}. The
alternative (and more general because finiteness of Γ is not assumed) solu-
tion is to introduce the new point 1. in part B. (and change the numbering
of the remaining points):

1. “D ⊕ χ” is a derivation of ϕ from Γ, provided χ ∈ Γ

Below there is a sample of a proof in KM. It is a particular case of the
schema of a thesis which was analyzed in Section 2.4.1 in the context of
tree-proofs. Let ϕi := pi, ψ := q, χi := ri, then for n = 3 we have the
following formula: ϕ → (q → r1 ∧ r2 ∧ r3), where ϕ := (p1 ∧ (q ∧ p1 →
r1)) ∧ (p2 ∧ (q ∧ p2 → r2)) ∧ (p3 ∧ (q ∧ p3 → r3))

1 SHØW: ϕ→ (q → r1 ∧ r2 ∧ r3) [12, COND]
2 ϕ ass.
3 p1 ∧ (q ∧ p1 → r1) (2, αE)
4 p2 ∧ (q ∧ p2 → r2) (2, αE)
5 p3 ∧ (q ∧ p3 → r3) (2, αE)
6 p1 (3, αE)
7 q ∧ p1 → r1 (3, αE)
8 p2 (4, αE)
9 q ∧ p2 → r2 (4, αE)
10 p3 (5, αE)
11 q ∧ p3 → r3 (5, αE)
12 SHØW: q → r1 ∧ r2 ∧ r3 [20, COND]
13 q ass.
14 q ∧ p1 (6, 13, αI)
15 q ∧ p2 (8, 13, αI)
16 q ∧ p3 (10, 13, αI)
17 r1 (7, 14, βE)
18 r2 (9, 15, βE)
19 r3 (11, 16, βE)
20 r1 ∧ r2 ∧ r3 (17, 18, 19, αI)

The example illustrates two things: the convention of setting proofs
in KM and our previous remarks concerning the economy of linear proofs
(when compared with tree ones). As for the first, in the rightmost column
(justification column) we state in every line the numbers of premises and
the name of the applied rule; ass. means assumption. As for the second
question, one may easily note that despite the value of n, the length of a
proof will be 5 + 5n, and its depth (=2) is rigid.
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2.5.4 The Original Formulation of KM

In our presentation of KM we departed in many ways from the original
system of [159].14 We proposed a bit different set of rules which is redundant
but the original KM system is in some respects even richer. It contains
additional rule of direct proof construction [DIR] which allows us to close
current subproof if it contains U-formula identical with the last (opening
this subproof) S-formula. We dispense with [DIR] as a rule specific for KM
but not very characteristic for ND systems in general. It is quite obvious
that every application of [DIR] is eliminable. There are three cases:

• Subproof closed by [DIR] has no assumption; we may rewrite it adding
as the first line an indirect assumption warranting inconsistency with
the last formula, and change the justification of a subproof completion
on [RED].

• Subproof closed by [DIR] contains an indirect assumption; everything
remains uchanged except the justification on [RED].

• Subproof closed by [DIR] contains a conditional assumption and S-
formula is some β; since the last U-formula is β again, and the as-
sumption is −β1, then we may add β2 as the additional line by the
application of (βE) and change the justification on [COND].

Although our description of the realization of KM slightly differs from the
original version, its two important features are preserved. First, it is a
characteristic feature of KM that introduction of assumptions in KM is
optional; we are not forced to do that. Second, the way of completing a
subproof is independent of the form of its introduction, e.g. we may start
with a conditional assumption (trying to do conditional proof) but finish
with ⊥ and close a subproof by [RED]. That is why, when showing the
eliminability of [DIR], we had to consider three cases of its application
instead of one.

Separating, on the level of realization, the elements rigidly connected on
the level of calculus, makes KM a particularly flexible and user’s friendly
tool of proof search. Other systems of ND in Jaśkowski’s format are usually
formulated in such a way that the manner we open and close a subproof
must be specified in advance. It is one more argument for introducing a

14The version from [158] differs in even more respects; e.g. there are no boxes, no
specified inference rules for connectives, no [RED].
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distinction between a calculus and its realization. Both, our description
of a calculus and the diagrams of realization of [COND] and [RED] were
more rigid (e.g. explicit occurrence of assumptions in both diagrams) than
KM indeed requires. In fact, when we start rather with the description of
realization of KM (even without [DIR]) and then try to precisely reconstruct
the calculus involved, we obtain a richer set of proof construction rules
containing additionally:

[COND′] If Γ � β2, then Γ � β
[COND′′] If Γ,−β � β2, then Γ � β
[RED′] If Γ � ⊥, then Γ � ϕ
[RED′′] If Γ,−β1 � ⊥, then Γ � β

The eliminability of these rules by means of rigid forms of [COND] and
[RED] may be easily established.

Virtues of KM

Before proceeding further and introducing a variety of ND systems based
on KM, it is worthwhile pointing out these features of the realization that
make it, in our opinion, superior to others. To be brief: KM is more dy-
namic, heuristically oriented and flexible. All these features together greatly
improve the didactic value of the system.

The distinction of the two types of lines/formulae with changing status
makes KM more dynamic than other systems. Proof search process is di-
vided into a sequence of partially isolated fragments which is similar to usual
mathematical practice of proving a theorem by means of auxiliary lemmata.
The hierarchy of parts is well controlled by the cancelling/boxing technique.
Moreover, after completion, the structure of the whole proof is represented
better than in other L-systems (perhaps not worse than in T-proofs).

The application of S-lines really helps in proof search. First, it aug-
ments the control over what is the current goal of a derivation. Second,
it resembles usual practice of argumentation, where a conclusion (thesis)
is usually stated first and then a justification is provided. Finally, it has a
great heuristic value in the analysis of ordinary arguments which are usually
enthymematic, and an honest interpretation should elucidate what is miss-
ing. The apparatus of KM helps to provide the reconstruction of missing
premises in the proof search. In case we fail at some stage of the construc-
tion of a proof for some argument, the last S-line suggests what additional
premise we need to complete a (sub)proof. One may compare such a premise
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with original data provided by an author of argument and evaluate whether
addition of extra information is compatible with the presented set of beliefs.
So, such additional data provided by S-lines may help either to show that
the analysed argument is valid or to provide a counterexample to it.15

Finally, the flexibility of proof construction mentioned above is a conse-
quence of independence of assumption introduction and the form of deriva-
tion closing. Additional redundancy of primitive rules strengthens this fea-
ture. As a result, in KM one may freely change the strategy of proof search
during the construction of a derivation. If we fail with one strategy (sig-
nalled by the shape of S-formula or a type of assumption), we may continue
with another and not necessarilly start a new subderivation for that.

2.6 Adequacy of KM

We are not going to present the completeness proof of KM for CPL. It is
enough to prove all axioms of any complete set with (MP ) as the only rule,
and we have a result indirectly, since (MP ) is covered by (βE). We leave
this task as a simple exercise to the reader.

The difficulty ND systems usually give rise, particularly in Jaśkowski’s
format, lies in their soundness proof which require some “translation” of all
this additional machinery into the semantics of a suitable logic. Jaśkowski
[157] established some standard form of soundness proof extensively used
by many logicians in the respective proofs for ND-systems. Shortly, for each
prefixed formula we build its development, which is a descending implication
with suppositions for each number in the prefix as antecedents and formula
itself as the succedent. For example, the development of a prefixed formula
i1....in.ϕ is ψ1 → (ψ2 → . . . (ψn → ϕ) . . .), where each ψk, 1 ≤ k ≤ n is
an assumption introduced with addition of successive ik to already existing
prefix, i.e. we have i1....ik.Sψk above i1....in.ϕ in the proof. Then Jaśkowski
has proved that the development of a formula in each line is a thesis of
axiomatic system, obtaining indirectly the proof of soundness of his ND.
On the basis of such a translation we can also prove soundness directly,
showing that the first line of a proof is valid (ϕ → ϕ) and that all rules
expressed in terms of developments are validity preserving.

This manner of showing soundness is very popular. There are many
variants of it (cf. e.g. Fitting [95], or the original proof of Kalish and

15One may notice that in some ND systems without explicit use of S-lines, their effect
is simulated by some meta-system devices, e.g. in Pollock’s [218] or in Gabbay [99], where
“almost” KM system is used.
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Montague from [158]) but essentially in such a proof we proceed by turning
formulae of any proof into sequents (we add a record of active assumptions),
and then by showing that (such modified) rules are normality preserving.
This is obvious and natural for S-systems in Suppes’ format, but for F-
systems it is not very natural. Instead of showing directly that F-system S
is sound, we first change it into some equivalent S-system S’, and then show
soundness of S’. Below we propose a general schema of proving soundness
for any ND system in Jaśkowski’s format which is in a sense more direct.
It allows separating of this part of soundness proof which is concerned with
proof construction as such, from showing the correctness of inference rules.
Generality means that in case of extensions we need only to check that
additional rules are correct.

We start with some auxiliary results characterizing KM rules in semantic
terms introduced in Chapter 1. Standard and easy proof is left to the reader.

Lemma 2.1 Every inference rule is CPL-normal

Lemma 2.2 Every proof construction rule is normality preserving in CPL

We introduce two notions concerning correctness of subderivations.

Let D be any proof and consider any subproof D′ of degree n > 0
contained in it. We say that this subproof is justified iff, Γ, ψ1 |= ψn, where
ψ1 is the first and ψn is the last formula of D′, and Γ is the set (possibly
empty) of all formulae of D above this subproof that were U-formulae at
the stage immediately before D′ was closed. For any subproof of degree i,
let 〈ψ1, ..., ψn〉 denote the sequence of all formulae inside the box that were
U-formulae of this subproof immediately before it was closed.

The proof proceeds by double induction: on the depth of D and on
the length of its subproofs. Let the depth of D be k; we show by reverse
induction on k that every subproof is justified. In the basis we consider all
subproofs of degree k, i.e. with no subproofs inside. By induction on the
length of any such subproof we show that it is justified. Let 〈ψ1, ..., ψn〉
be the sequence of all formulae inside the box, and Γ be the set of all
U-formulae above this subproof. By induction on n, we may show that
Γ, ψ1 |= ψi (1 ≤ i ≤ n).

Basis: i = 1, so ψ1 is an assumption, and the thesis follows by reflexivity
and monotonicity of |=. Assume the thesis holds for any i such that i < k ≤
n; we will show that Γ, ψ1 |= ψk. Either all premises used in the deduction
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of ψk belong to Γ ∪ {ψ1}, or at least one of them is ψi. In the former case
it holds by monotonicity and Lemma 2.1, in the latter case by the same
lemma, induction assumption and transitivity of |=. So every subderivation
of degree k is justified.

Now assume that every subproof of degree i + 1 ≤ k is justified, we
show that every subproof of degree i is justified. The proof goes as for
basis, by induction on the length of the considered subproof, but this time
as elements of this subproof we may also have some formulae that were
previously S-formulae initiating subproofs of degree i + 1. Let ψi be the
first such formula. By induction assumption we have Γ′, χ1 |= χn, where
χ1 is an assumption and χn the last line of this subproof of degree i + 1.
By Lemma 2.2, Γ′ |= ψi because this subproof was completed by some of
the proof construction rules, and both rules are normality preserving. Γ′

is just Γ ∪ {ψ1, ...ψi−1}, but we have already proved that Γ, ψ1 |= ψj , for
each j ≤ i− 1, so by transitivity we have Γ, ψ1 |= ψi which guarantees that
theorem holds in this case, as well. This step is repeated for subsequent
ψi that were previously S-formulae, so every subproof containing nested
subproofs is also justified. In particular, it holds for the only subproof of
degree 1 and thus we have:

Theorem 2.1 (Soundness of KM for CPL) If Γ � ϕ, then Γ |= ϕ

2.7 ND for First-Order Logic

2.7.1 Gentzen Systems

Both the systems of Jaśkowski and Gentzen contained also the rules for
quantifiers. In fact, Jaśkowski [157] provided the first formalization of in-
clusive logic, so we describe it when ND for free logic will be considered.
Gentzen [109] gives an adequate set of rules for CQL (and for intuitionistic
QL) which is duplicated in many ND systems nowadays.

(∀Ep) ∀xϕ / ϕ[x/a], where a is any parameter (or term)
(∀Ip) ϕ[x/a] / ∀xϕ, provided a is a parameter with no occurrence

in undischarged assumptions and premises
(∃Ip) ϕ[x/a] / ∃xϕ, where a is any parameter (or term)
[∃Ep] If Γ � ∃xϕ and Δ, ϕ[x/a] � ψ, then Γ,Δ � ψ, provided a is a

parameter new to ϕ,ψ and the set of undischarged
assumptions Γ,Δ
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The last rule in Gentzen’s tree realization looks as follows:

Γ [ϕ[x/a]],Δ
...

...
∃xϕ ψ

ψ

One of the characteristic features of Gentzen’s rules is the asymmetry
of (∀Ip) and [∃Ep] which is not present in his SC (cf. a presentation of SC
in the next Chapter). One might expect that either both should be proof
construction or inference rules. We will say more about it later.

The next feature is that instead of free variables, the special category
of quasi- or arbitrary- or parametric names16 is introduced. This simplifies
the matter as one is not bound to make troublesome distinctions while
dealing with proper substitution (cf. Chapter 1), which is certainly an
advantage in the context of teaching logic. Such rules also correspond well
to substitutional semantics. But sometimes using free variables can make
the formulation of the set of rules even easier, as is the case with rules of
KM. Moreover, the category of such names is somewhat ambiguous and
probably, as e.g. Pelletier [205] has noticed, not very consequently used.
There are different senses of arbitrariness involved in (∀Ip) and in [∃Ep].
In the former we mean any object with no established properties except
satisfaction of ϕ, whereas in the latter we refer rather to some specific but
unidentified (unnamed) object satisfying ϕ.

Because of all that we prefer to use rules with no parameters in the main
system, but we will also present variants with rules based on parameters.
The names of such rules will be distinguished by a superscript p; exactly as
in the original rules of Gentzen formulated above.

In [110] Gentzen introduced suitable rules for S-system of ND:

(∀Ep
S) Γ ⇒ ∀xϕ / Γ ⇒ ϕ[x/τ ], where τ is any term

(∀IpS) Γ ⇒ ϕ[x/a] / Γ ⇒ ∀xϕ, provided a is a parameter with no
occurrence in undischarged assumptions and premises

(∃IpS) Γ ⇒ ϕ[x/τ ] / Γ ⇒ ∃xϕ, where τ is any term
(∃Ep

S) Γ ⇒ ∃xϕ; Δ, ϕ[x/a] ⇒ ψ / Γ,Δ ⇒ ψ, provided
a is a parameter new to Γ,Δ, ϕ, ψ

16There is no risk of confusion with the notion concerning formulae in sequents so, in
this book, we will call them shortly parameters in accordance with the terminology of
Fitting.
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Also in this system we have an asymmetry in treating ∀ and ∃, which
is not present in his SC. Two rules admit more general category of terms
τ as the system is defined for arithmetic and there are individual constants
representing natural numbers in the language.

Basically this set of rules is commonly applied in textbooks using Suppes’
format of ND. But when linear proofs are introduced it is more convenient
to state a suitable rule of ∃ elimination in the calculus as the three-premises
rule of the form:

(L∃EpS) Γ ⇒ ∃xϕ; ϕ[x/a] ⇒ ϕ[x/a]; Δ, ϕ[x/a] ⇒ ψ / Γ,Δ ⇒ ψ,
provided a is a parameter new to Γ,Δ, ϕ, ψ

In fact, Suppes in [266] applies a different form of elimination of ∃ which
does not correspond to Gentzen’s solution because in terms of F-systems
Gentzen’s variant is a proof construction rule, whereas Suppes’ variant is
an inference rule. The above rule is probably due to Lemmon [174] (hence
the prefix L in the name); the original rule of Suppes was:

(S∃Ep
S) Γ ⇒ ∃xϕ / Γ ⇒ ϕ[x/ay1,...,yk

], provided a is a parameter
new to Γ, ϕ, and y1, ..., yk are all free variables of ϕ

Structurally, this rule is simpler but it introduces a form of skolemization
and additionally leads to considerable complications in formulation of the
correct rule of ∀ introduction in Suppes’ system. We do not present his
variant of (∀IpS) but postpone a discussion of troubles connected with ∃
elimination as an inference rule to the next subsection.

2.7.2 Kalish/Montague Rules for CQL

The original set of quantifier rules due to Kalish and Montague is in a
sense opposite to Gentzen rules. First, it is defined on pure language (only
variables – including free occurrences). Secondly, the elimination of ∃ is an
inference rule, whereas the introduction of ∀ is a proof construction rule.
We also admit substitution of individual names for variables, so by ϕ[x/τ ]
we mean either a proper substitution of variable τ or of any name τ for x
in ϕ. Let us display the rules below:

(∀E) ∀xϕ / ϕ[x/τ ]
(∃E) ∃xϕ / ϕ[x/y], provided y is a new variable in a derivation
(∃I) ϕ[x/τ ] / ∃xϕ
[UNIV ] If Γ � ϕ, then Γ � ∀xϕ, provided x /∈ V F (Γ)
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Note that in (∃E) a variable y is not at all admitted; neither as free nor
as bound, neither in U- nor in S-formulae stated in a derivation. Condition
for [UNIV ] is more relaxed; we make a constraint only with respect to free
occurrences of x and only in U-formulae but Γ covers not only assumptions
but all U-formulae above S-line with ∀xϕ. Although in practice KM ad-
mits subderivations without assumptions, this last rule does not require an
assumption even in theory. Its formulation for KM may be stated as follows:

[UNIV ] Let ∀xϕ be a show-formula of k-degree subderivation, then we
can close this subderivation, if ϕ has appeared as an usable-formula in this
subderivation, provided x /∈ V F (Γ), where Γ is the set of all U-formulae
above S-formula ∀xϕ.

It is a simple matter to enrich the definition of a derivation stated in
Section 2.5.3 with additional 4 clauses corresponding to the respective rules
so we leave it to the reader. When extending the definition of a deriva-
tion to the case of deducibility from premises we follow the first solution
stated therein, i.e. we make a stipulation that all premises must be stated
before the first show-line is introduced. Note that if in the formulation of
derivation from premises we will apply the second approach, i.e. a possi-
bility of introducing a premise as any line in a derivation, we could prove
Ax � ∀xAx, something which we certainly do not want to obtain. Fortu-
nately, such deductions are impossible if the premise is stated above the
show-line.

It is routine to prove all axioms and show derivability of rules of H-CQL
except perhaps (∃). In this case we have the following proof of ∃xϕ→ ψ on
the basis of the assumption that ϕ(x) → ψ is already a thesis and x /∈ V F (ψ)

1 SHØW: ∃xϕ→ ψ [7, COND]
2 ∃xϕ ass.
3 ϕ[x/y] (2,∃E)
4 SHØW: ∀x(ϕ(x) → ψ) [5, UNIV ]
5 ϕ(x) → ψ thesis
6 (ϕ(x) → ψ)[x/y] (4,∀E)
7 ψ (3, 6, βE)

In the proof y must be new so y /∈ V F (ψ) exactly as x. In result
(ϕ(x) → ψ)[x/y] = ϕ[x/y] → ψ and the inference in line 7 is correct.
Universal closure of ϕ(x) → ψ in line 4 is justified since the formula with
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free x is a thesis, not an arbitrary premise which must be stated before the
first show-line.

So, on the basis of completeness of H-CQL, we obtain:

Theorem 2.2 (Completeness) If Γ |=CQL ϕ then Γ �KM−CQL ϕ

Remark 2.1 As for the question of asymmetry of the rules for introduction
of ∀ and elimination of ∃ which is characteristic for systems of Gentzen
and for KM as well, one should note that there are also systems where
it is avoided. For example, Suppes’ S-system mentioned in the preceding
subsection is of this kind. In case of F-systems, ND of Quine [226], or
of S�lupecki, Borkowski [54] have all the rules for quantifiers formulated as
inference rules. In fact, Gentzen’s rule for elimination of ∃ may be also
transformed into inference rule, if we replace a subderivation by suitable
implication; the result is:

∃xϕ, ϕ[x/a] → ψ / ψ, provided a is a new parameter to ϕ,ψ and to all
undischarged assumptions.

On the other hand, systems of Fitch [89] or Thomason [274] offer two
proof construction rules: Gentzen’s-like [∃E] and a kind of [UNIV ]. Yet
another combination is present in ND system due to Negri and von Plato
[193], where introduction rules are inference rules and elimination rules are
proof construction rules for both quantifiers, cf. Section 4.1.1. ♣

The interplay of ∃ elimination and ∀ introduction leads to troubles in
the formulation of correct rules, particularly evident if the first is proposed
as an inference rule. It is not possible to combine any known rules for
quantifiers because in most cases the result would be unsound. No surprise
that proper statement of (∃E) was delayed; first formulations of Copi [72]
were incorrect as well as versions from later editions,17 and even correct
ones like in Quine [226] were so complicated that one can hardly call them
practical and natural. For example, in S�lupecki, Borkowski system one
must in fact introduce hidden form of skolemization (similar as in Suppes’
rule) and additional global side conditions (i.e. constraints put on the whole
proof). Seen in this light, the rules of KM are really simple, which is possible
due to the whole structure of the system.

17Actually, the problems was to state properly the restriction for ∀ introduction, in the
presence of (∃E); a detailed account of it can be found in Pelletier [204] and in Fine [87].
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2.7.3 Gentzen’s Variant of KM

Systems with inference rule of ∃ elimination suffer from difficulty with prov-
ing soundness. It is the only inference rule which is not normal, since the
conclusion does not follow from the premise. Because of that, neither stan-
dard forms of soundness proof (i.e. by transformation of a formula into a
sequent with all active assumptions displayed in antecedent), nor the proof
introduced in the preceding section works. One should rather use global
strategies characteristic for soundness proofs for tableaux where in order to
justify every line we refer to satisfiability of all formulae above (cf. Fitting
[93] for application to modal ND). Yet another proof, which we omit here, is
due to Kalish and Montague in [158]. For keeping KM format open for sev-
eral modifications we proceed indirectly. Let us call KMG (from Gentzen)
a variant of KM where (∃E) is replaced by [∃E] of the form:

[∃E] If Γ,∃xϕ, ϕ[x/y] � ψ, then Γ,∃xϕ � ψ,
provided y is a variable new in a derivation

On the level of realization in KMG it splits into two rules: for introduc-
tion of existential assumption, and for closing a subderivation:

(c)18 if ∃xϕ is a U-formula and the last line is a show-line, then we may
add ϕ[x/y] as an existential assumption of this subderivation, provided y is
new in a derivation.

[∃E] Let ϕ be a show-formula of k-degree subderivation, then we can
close this subderivation provided ϕ has appeared in it as a usable-formula.

Let us emphasize again the freedom KM format admits for its proof con-
struction. We do not have to require the presence of existential assumption
in the last rule; even if it is not present, the closure is correct, being just a
case of [DIR]. On the other hand, introduction of existential assumption
does not forces us to close a subderivation by [∃E] – one may equally well
close it by [RED], [COND] or [UNIV ]. Such forms of completion are based
on the following rules:

18Here and then we follow the convention of Section 2.5, where two instructions for
assumption introduction were signed by (a) and (b).
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1. If Γ,∃xϕ, ϕ[x/y] � ⊥, then Γ,∃xϕ � ψ,
provided y is a variable new in a derivation

2. If Γ,∃xϕ, ϕ[x/y] � β2, then Γ,∃xϕ � β,
provided y is a variable new in a derivation

3. If Γ,∃xϕ, ϕ[x/y] � ψ, then Γ,∃xϕ � ∀zψ,
provided y is a variable new in a derivation

All these variants are eliminable: 1. If we have a contradiction, then we may
by (⊥E) deduce a formula identical to S-formula ψ and close a subproof by
[∃E]. 2. If we have deduced β2 of S-formula β, then β is also derivable
by (βI) and again we close a subproof by [∃E]. 3. In the last case we
must insert a new S-formula ∀zψ immediately after existential assumption
ϕ[x/y]; then the new subproof closes by [UNIV ] since the conditions on z
are satisfied (y must be new so y �= z), and the outer one closes by [∃E]
since S-formula ∀zψ became usable and identical to current S-formula.

So KMG keeps a flexibility of construction characteristic for this format
of ND system. In practice, when dealing with existential assumption, one
may postpone the introduction of S-formula, write just “SHOW:” and com-
plete the line later remembering simply about the constraint on variable in
assumption. It is a handy way to proceed if one has no idea of what to
search for at a current stage but there is an unused existential formula.

Soundness of KMG-CQL can be easily demonstrated. It is enough to
prove that (∀E) and (∃I) are normal, and that [UNIV ] and [∃E] preserve
normality and then to make suitable adjustments in the proof from the
preceding section. We show, as an example, that [∃E] is correct and leave
the rest to the reader.

Assuming that Γ,∃xϕ, ϕ[x/y] |= ψ and y is not in Γ, ϕ and ψ, we must
show that Γ,∃xϕ |= ψ. Consider M, a � Γ,∃xϕ, hence M, a � Γ and
M, a � ∃xϕ. Since |= ∃xϕ ↔ ∃yϕ[x/y], then M, a � ∃yϕ[x/y]. It means
that M, ayo � ϕ[x/y] for some o in the domain of M. But then, since y is
not free in Γ and ∃xϕ it follows that M, ayo � Γ,∃xϕ (cf. the fact stated in
Section 1.1.4). Hence M, ayo � ψ by assumption and, since y is not free in ψ
either, M, a � ψ.

We are entitled to conclude:

Lemma 2.3 (Soundness of KMG) If Γ �KMG ϕ then Γ |=CQL ϕ

Now, it is also easy to prove the soundness of KM by showing that
every proof in KM may be transformed into a proof in KMG. In fact, it is
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sufficient to demonstrate that (∃E) is admissible in KMG since other rules
are the same in both systems. We do it by induction on the number of (∃E)
applications in a proof in KM. The case of 0 applications is trivial. Let us
assume that we have just one application of this rule in some subproof. We
may transform this part of a proof dispensing with (∃E) in favor of [∃E].
This is displayed in the following schema:

Γ Γ
i SHØW: ϕ [n, 
] �−→ i SHØW: ϕ [k, 
]

Δ Δ
k ψ[x/y] (j,∃E) k SHØW: ϕ′ [n+ 1,∃E]

... k + 1 ψ[x/y] ass.

n ϕ′ ...
n+ 1 ϕ′

where: 
 ∈ {COND,RED,UNIV }, ϕ is a suitable S-formula and ϕ′

suitable formula closing a subproof, ∃xψ ∈ Γ ∪ Δ �= ∅ (although Γ or Δ
alone may be empty) in line j (1 ≤ j < i or i < j < k).

It is enough to check that if the input-subproof is correct then the trans-
formed output-subproof is also correct. Note that by the definition of proof
construction rules y cannot occur in ϕ′ as it would also occur in ϕ while
it must be new when introduced by (∃E). Hence the application of [∃E]
in output-subproof is correct in KMG. For induction step we apply exactly
the same transformation. So by the above schema we have that:

Lemma 2.4 If Γ �KM ϕ then Γ �KMG ϕ

This lemma implies both completeness of KMG (by Theorem 2.2.) and
soundness of KM (by Lemma 2.3).

2.7.4 KM for Free Logic

The apparatus of KM, or KMG, is very convenient for the easy-going for-
malization of free logic. The first ND system for inclusive logic was in
fact formulated by Jaśkowski [157]. He used a convention of introducing as
assumptions not only formulae but also variables (the only terms of his sys-
tem). So he had a rule to the effect of starting a subproof with the so-called
term supposition Tx and two rules for ∀
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(J∀E) ∀xϕ, Ty / ϕ[x/y]
[JUNIV ] If Γ, Tx � ϕ, then Γ � ∀xϕ, provided x /∈ V F (Γ)

Most of the ND systems for FQL proposed later are based on the ap-
plication of proof construction rule for elimination of ∃ and use parameters.
We rather introduce a system being a minimal modification of the original
KM from Section 2.7.2. The following free variants of KM rules were first
introduced in Indrzejczak [141]; they look as follows:

(F∀E) ∀xϕ,Eτ / ϕ[x/τ ]
(F∃E) ∃xϕ / Ey ∧ ϕ[x/y],

provided y is a new variable in a derivation
(F∃I) ϕ[x/τ ], Eτ / ∃xϕ
[FUNIV ] If Γ, Ex � ϕ, then Γ � ∀xϕ, provided x /∈ V F (Γ)

Let us call KM’ a system obtained by the addition of these rules to the
propositional basis of KM. On the level of the realization the statement
of [FUNIV ] is the same as for [UNIV ]; the assumption Ex need not be
mentioned at all (the reasons for that will be explained below). But we
must add an explicit instruction for the introduction of it into a proof:

(d) if the last S-formula is ∀xϕ and x has no free occurrence in U-
formulae above this line, then we may add Ex as an existential assumption
of this subderivation.

One may observe in this context that proof construction rules for ∀
introduction, like [UNIV ], are very much in the spirit of free logic. It is a
natural composition of conditional and universal proof, whereas any form
of inference rule for ∀ introduction forces us to use an implication as a
premise. Moreover, in free logics we avoid this way introducing subproofs
without assumptions, a practice which may seem odd to some practitioners
of ND systems.

Completeness of this system may be shown in a similar way as we did
for KM-CQL by showing that all axioms are provable and all rules are
derivable. We leave it to the reader. In showing soundness we also encounter
the same problem as in the classical setting; non-normality of (F∃E). It is
not surprising that we apply the same strategy and introduce KMG’ variant
with the suitable proof construction rule:

[F∃E] If Γ,∃xϕ,Ey ∧ ϕ[x/y] � ψ, then Γ,∃xϕ � ψ,
provided y is a new variable in a derivation
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All the results concerning soundness of KMG’ with respect to FQL and
admissibility of (F∃E) in this system, which together yield adequacy of
both KM’ and KMG’ with respect to FQL, follow the same pattern as in
the classical case. The reader is asked to check it for himself.

2.7.5 Introduction of Parameters

Finally, we consider how KM (or KMG) should be modified to obtain a sys-
tem involving rules with parameters. The modification of (∀E) and (∃I) is
straightforward; we just take Gentzen’s (∀Ep) and (∃Ip) instead. Normal-
ity of both rules is provable in exactly the same way, provided parameters
are semantically treated as free variables. Similarly, instead of (∃E) we
use (∃Ep) which introduces a new parameter. Now consider a variant of
[UNIV ]:

[UNIV p] If Γ � ϕ[x/a], then Γ � ∀xϕ,
where a is a new parameter to Γ and ϕ

Unfortunately, it does not work. Although we do not have to make a
constraint on free occurrences of x, since there are no free variables (only
parameters) in such a system, we may easily deduce ∃xϕ → ∀xϕ. It is
enough to have ∃xϕ in Γ, introduce ∀xϕ as a show-line, then apply (∃Ep)
inside this subderivation for a as a new parameter, which is sufficient to
close a box. In order to avoid such a situation one must take care of the
origin of a new parameter in ϕ[x/a] that closes a subderivation by [UNIV p].
Let us consider some techniques that may be applied:

1. One may use a new parameter a as flagging a subderivation under
S-formula ∀xϕ and require that U-formula closing this subderivation
must contain exactly this parameter substituted for x. It is just a
technique of Jaśkowski and many ND systems use similar solutions.

2. Bonevac [52] has made a stipulation introducing, immediately after
show-line with ∀xϕ, the next show-line with ϕ[x/a], where a is a new
parameter. If the innermost subderivation is closed (by any rule) we
automatically obtain a formula closing the parent subderivation by
[UNIV p]. In this way we avoid additional bookkeeping device intro-
duced in the preceding solution however at the expense of making two
connected subderivations instead of one. Note that it is a modification
made rather on the level of strategy of a proof search.
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3. In the system for QLI we may, instead of flagging a subderivation
by a new a, introduce a = a as the first line (universal assumption)
establishing which “new” parameter should be substituted for x in
U-formula closing this subderivation.

4. Likewise, but instead of a = a one may introduce Ea with a new a
as existential assumption of this subderivation. Note that this is a
variant (with parameter) of [FUNIV ] we have stated for free logic.
But nothing changes if other rules are as for the classical first-order
logic, because our free variant of ∀ introduction (as well as other free
logic rules) is also correct in CQL and sufficient for making all the
classical deductions. It suffices to observe that if the rule for the
elimination of ∀ is classical, then Ea is not needed as a premise for
deduction but only to fix a new parameter for universal subderivation.

5. Finally, one may introduce, immediately after S-formula ∀xϕ, an (in-
direct) assumption ¬ϕ[x/a] with a new a. It has some advantage over
3. and 4. – we may use it in CQL with no extension of a language
or technical machinery, similarly as in 2. But it is a special form of
indirect proof rather than universal derivation.

In what follows we will no longer consider solution 1. as bringing dispens-
able element into the technical machinery, difficult to state on the calculus
level. Solution 2. has some merits since [UNIV p] is a correct rule in itself,
and Bonevac’s solution allows keeping it together with (∃Ep) on the level of
calculus. But we must carefully introduce strategic constraints for making
universal proof on the level of the realization. We are not going to enter into
details (one may consult [52]) but rather focus on the remaining solutions.

Solutions 3, 4, and 5. may be grouped together as all depending on
the introduction of an assumption that makes a new parameter a fixed for
universal subderivation. So on the level of calculus the correct rule of ∀
introduction has the following form:

[UNIV p�] If Γ, ψ(a) � ϕ[x/a], then Γ � ∀xϕ,
where a is a new parameter to Γ and ϕ

Here ψ(a) is Ea, a = a or ¬ϕ[x/a] according to the chosen solution. The
version of [UNIV p�] with Ea will be called [FUNIV p] for future use (in the
context of free logic). KM system based on inference rules with parameter
and on some form of [UNIV p�] will be called KMP.
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Remark 2.2 Note that although [FUNIV p] and [FUNIV ] are structurally
similar there is a significant difference. Existential assumption in [FUNIV ]
is in fact not necessary for completing universal subproof. Constraints on
x are stated as an extra side condition and we need this assumption only
because we are in free logic and the rule of ∀ elimination requires such
formulae as additional premises. In case of [FUNIV p] (and [UNIV p�]
in general) an assumption is essential just for closing universal subproof
because it fixes some arbitrary parameter for this subproof. Therefore we
need it (or something similar) even in a system for classical logic, where
the elimination of ∀ does not involve existential formulae as an additional
premise. It shows that although using parameters instead of free variables
seems to be quite an innocent deviation, it can make serious differences
when concrete systems are defined. ♣

Again on the level of realization of KMP we have a division into two
rules: for introduction of suitable assumption, and for completing a sub-
derivation:

(e) if the last S-formula is ∀xϕ, then we may add ψ(a) (Ea or a = a
or ¬ϕ[x/a]) as an (existential, universal, indirect) assumption of this sub-
derivation, provided a is new in a derivation.

[UNIV p�] Let ∀xϕ be a show-formula of k-degree subderivation, then
we can close this subderivation provided ϕ[x/a] has appeared in it as a
usable-formula, where a is a parameter fixed by the assumption of this
subderivation.

Note that although the introduction of suitable assumption under uni-
versal S-formula is not necessary in general, it must be introduced if we want
to apply closure by [UNIV p�]. Completeness of KMP follows from the fact
that every proof in KM-CQL is simulated in KMP just by suitable renam-
ing of free variables on parameters and addition of respective assumption
in every case of universal (sub)proof. We leave the details to the reader.
Again, for showing soundness (but not only for that) we will introduce one
more variant based on proof construction rule for the elimination of ∃.

2.7.6 Gentzen’s Variant of KMP

It seems that in KMG with parameters (hence called KMGP) we may keep
[UNIV p] and avoid nonvalid deductions. But in fact the same difficulties
may appear in KMGP but on the level of representation. Let us explain the
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problem. If we replace (∃Ep) with a variant of [∃E] with a new parameter:

[∃Ep] If Γ,∃xϕ, ϕ[x/a] � ψ, then Γ,∃xϕ � ψ,
provided a is a new parameter to Γ, ϕ, ψ

Then on the level of calculus everything is correct, i.e. both inference
rules are normal and both proof construction rules are normality preserving.
But now the flexibility of KM (and KMG) realization may cause troubles.
The point is that the introduction of assumptions in KM is independent of
the form of completing a subderivation. For example, an introduction of
existential assumption does not force us to make a closure by [∃Ep]. So,
if we just put a parameter a instead of a variable y in a clause concerning
the introduction of existential assumption, and do not make any additional
restriction for closing a subderivation by [UNIV p] except a requirement of
a in ϕ[x/a] being new, then we have problems again. The only difference
is that now ϕ[x/a] would appear as an assumption inside the respective
subproof, not as a conclusion of (∃Ep) application. But one should be
aware that such a formulation of completion by [UNIV p] on the level of
realization does not agree with respective proof construction rule from a
calculus. If ϕ[x/a] closing a subderivation is an assumption it does not
satisfy the condition Γ � ϕ[x/a]. So, the correct formulation of closure by
[UNIV p] in a parametric version of KMG should read:

[UNIV p] Let ∀xϕ be a show-formula of k-degree subderivation, then we
can close this subderivation, if it has ϕ[x/a] as a usable-formula but not an
assumption, and a parameter a does not occur in current S-formula ∀xϕ
and U-formulae above it.

Although such a formulation forbids incorrect inferences it is unneces-
sarily complicated; much weaker restriction is sufficient. The suitable rule
for introduction of ∀ on the level of calculus is:

[UNIV p′ ] If Γ � ϕ[x/a], then Γ � ∀xϕ, where a is a parameter
with no occurrence in ϕ and undischarged assumptions

On the level of realization we formulate a condition for closure:

[UNIV p′ ] Let ∀xϕ be a show-formula of k-degree subderivation, then we
can close this subderivation, if if it has ϕ[x/a] as a usable-formula, and a pa-
rameter a does not occur in current S-formula ∀xϕ and in any undischarged
assumption.
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In fact, the constraints on [∃Ep] may be relaxed in a similar way, yielding
the following rule:

[∃Ep′ ] If Γ,∃xϕ, ϕ[x/a] � ψ, then Γ,∃xϕ � ψ, where a is a parameter
with no occurrence in ϕ,ψ and undischarged assumptions

So in both proof construction rules with parameters we have slightly
weaker side condition on a. A parameter a is not required to be completely
new; it must be only new to the set of active assumptions. Note that
these restrictions were originally formulated by Gentzen for his T-system
and followed by many authors of textbook’s ND systems. Although it is
difficult to show that this modification bring about some substantial profits
with respect to the formalization of QL, we will see that in modal logics
this is an essential difference between KMGP and KM. Thus eventually by
KMGP we mean the system based on [UNIV p′ ], [∃Ep′ ], (∀Ep) and (∃Ip).
In fact it is a set of rules characteristic for many systems, e.g. in Garson
[105], with one difference only. We still keep proof construction rule for
introduction of ∀, whereas in [105] it is an inference rule but with the same
proviso (which is actually the original Gentzen’s rule – see Section 2.7.1),
namely:

(∀Ip) ϕ[x/a] / ∀xϕ, provided a is a parameter
not occurring in ϕ and undischarged assumptions

It is straightforward that the two rules yield the same results, provided
other quantificational rules are the same. In one direction: Let D be a
derivation with at least one application of (∀Ip), we apply to every case
a simple modification. If in line n, U-formula ∀xϕ was deduced by (∀Ip)
from ϕ[x/a] in line k < n, then turn n into show-line, repeat ϕ[x/a] in
n + 1 (by Jaśkowski’s repetition rule), close this one-line subderivation by
[UNIV p′ ]. Then change the numbers of later lines (if there are any) of this
derivation (n+ 1 of D for n+ 2 in the “new” derivation, e.t.c.). Proceeding
systematically we will obtain a proof which is i-lines longer, where i is the
number of (∀Ip) applications in D.

In the other direction: Let D be a derivation with at least one application
of [UNIV p′ ] and let ∀xϕ with canceled SHOW be in line k and boxed
occurrence of ϕ[x/a] justifying this application of a rule be in line n > k.
Due to the possibility of having some assumption in line k+1 we have three
cases to consider.

• There is no assumption under S-formula ∀xϕ. We simply delete show-
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line k and the box below. All formulae in the boxed subproof must be
renumbered (k+ 1 for k, ..., n for n− 1) and ∀xϕ added as a new line
n inferred from ϕ[x/a] by (∀Ip). The new proof has the same length
as D but its depth may be smaller since we eliminate some boxes.19

• There is an indirect assumption (¬∀xϕ) in line k + 1. This time we
just add new lines to the box: n + 1 contains ∀xϕ inferred by (∀Ip)
from line n, n+ 2 contains ⊥ by k+ 1, n+ 1. The justification for the
completion of the box is changed into [RED] and the numeration of
the remaining lines is altered accordingly (+2). The number of boxes
in a proof is intact.

• In some line i < k there is ∃xψ and in line k+1 we have an existential
assumption ψ[x/b]. Clearly, b �= a, otherwise a would be present in
the undischarged assumption and the application of [UNIV p′ ] would
be incorrect. We must add only one line: again, a new n + 1 con-
tains ∀xϕ inferred by (∀Ip) from line n. It is identical to current
S-formula and does not contain b so the justification for closure of the
box is changed into [∃Ep′ ] and the numeration of the remaining lines
is altered accordingly (+1). The number of boxes in a proof is also
intact.

Thus, because KMGP is equivalent to Garson’s ND system which is ade-
quate, we have:

Theorem 2.3 (Adequacy of KMGP) KMGP is adequate for CQL

Now we may show the soundness of KMP by simulation of every proof
in KMGP. This is apparently harder than in case of KM and KMG, as
the proof construction rules of KMGP have essentially weaker restrictions.
Fortunately, additional complications are not very hard. First, we change
every application of [UNIV p�] in some D into [UNIV p′ ]. This is simple,
it is enough to delete an assumption ψ(a) under show-line. The result is
the correct application of [UNIV p′ ] because, if a was declared as having
completely fresh occurrence in ψ(a), then a fortiori it is not present in

19But it may be the same since the depth is measured not by the number of boxes in
general but by the maximal number of nested boxes, and the eliminated box may not be
a member of this maximal sequence.
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undischarged assumptions of the new proof. Now, we have a proof D′ where
every application of [UNIV p�] is already replaced by [UNIV p′ ]. Now we
eliminate from D′ all applications of (∃Ep) in favor of [∃Ep′ ]. The schema of
elimination is very much the same as the schema presented in Section 2.7.3
for KM and KMG, only with a instead of y. We must only check that after
the transformation the new proof D′′ is really a proof in KMGP. It is enough
to check that every application of [∃Ep′ ] is correct. Let us emphasize that
a cannot occur in ϕ′ (we mean ϕ′ in the schema of elimination displayed
in Section 2.7.3), which is a necessary condition for a modified proof to be
correct. In cases where completion of a subproof containing the application
of (∃Ep) was by [RED] or [COND] it is obvious. In case it is obtained by
[UNIV p′ ] it is likewise impossible, since in ϕ′ there must be some b �= a
which was fixed as new by the (already deleted) assumption in the original
D. If b = a, then the application of (∃Ep) in the transformed proof would be
incorrect because the assumption with b was above ψ[x/a]. So, in two steps
we may transform every KMP proof into KMGP proof and by Theorem 2.3.
we have:

Lemma 2.5 (Soundness of KMP) KMP is sound for CQL

Remark 2.3 One should note that the possibility of introducing more lib-
eral restrictions for elimination of ∃ and introduction of ∀ does not depend on
the presence of parameters. The necessary condition for weakening the side
conditions of both rules is the fact that the elimination of ∃ is of Gentzen’s
type, i.e. a proof construction rule; whether we use parameters or just
free variables is inessential. In fact, we are even not obliged to introduce a
variable different from quantified x as long as a constraint on undischarged
assumptions (and inferred formula ψ, in case of ∃ elimination) is satisfied. It
seems that the first ND system of this kind (but with suitable rules defined
on free variables not on parameters) may be found already in Anderson and
Johnstone [6]. It follows that we could also introduce a version of KMG of
this sort. We did not because we needed KMG only as a supporting system
for proving soundness of KM. To this aim the replacement of only one rule
(namely (∃E)) and by [∃E] of such form as we stated, yields the simplest
solution. ♣

2.7.7 KM with Parameters for Free Logic

For free logic we may also obtain two versions based on rules with parameters
analogically as we did for CQL. The first one KMP’ consists of the following
rules:
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(F∀Ep) ∀xϕ,Eτ / ϕ[x/τ ]
(F∃Ep) ∃xϕ / Ea ∧ ϕ[x/a],

provided a is a new parameter in a derivation
(F∃Ip) ϕ[x/τ ], Eτ / ∃xϕ
[FUNIV p] If Γ, Ea � ϕ[x/a], then Γ � ∀xϕ,

provided a is a new parameter to Γ and ϕ

All the rules are obvious parameter-counterparts of the rules stated for
KM’-FQL in Section 2.7.4. In particular, [FUNIV p] is an instance of
general [UNIV p�] with Ea in place of ψ(a).

KMGP’ is obtained from KMP’ by replacing (F∃Ep) and [FUNIV p] by
the following:

[F∃Ep′ ] If Γ,∃xϕ,Ea ∧ ϕ[x/a] � ψ, then Γ,∃xϕ � ψ,
provided a is a parameter with no occurrence in ϕ,ψ
and undischarged assumptions

[FUNIV p′ ] If Γ, Ea � ϕ[x/a], then Γ � ∀xϕ, where a is a parameter
with no occurrence in ϕ and undischarged assumptions

This is basically the solution of Garson [105], but again, with the intro-
duction of ∀ as a proof construction, not as an inference rule, which seems
to be more natural in case of free logic. So, similarly as for CQL, we pro-
vide a version of KMGP’ which differs from KMP’ not only by changing
inference rule for ∃ elimination into proof construction rule, but also by the
introduction of less demanding side conditions.

These systems bring about no specific problems except those which were
discussed for versions adequate for CQL in the two preceding subsections.
So by the analogous reasoning but tailored for FQL one may obtain:

Theorem 2.4 (Adequacy) KMP’ and KMGP’ is adequate for FQL

2.7.8 Identity

In contrast to the multiplicity of rules presented for several versions of ND
for QL the addition of identity is unproblematic. We need an axiom schema
ID and the rule:

(LL) τ1 = τ2, ϕ / ϕ[τ1//τ2], where ϕ is atomic
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It is an obvious counterpart of axiom LL from Section 1.1.4. Thus showing
that strengthening of some ND system S with ID and (LL) is equivalent to
a suitable axiom system S′ with ID and LL is trivial if we have shown that
S and S′ are equivalent. The latter holds for all ND systems considered
above. It is convenient to recall in this place all variants of quantificational
KM systems we have introduced:

1. KM = (∀E) + (∃I) + (∃E) + [UNIV ]

2. KMG = (∀E) + (∃I) + [∃E] + [UNIV ]

3. KM’ = (F∀E) + (F∃I) + (F∃E) + [FUNIV ]

4. KMG’ = (F∀E) + (F∃I) + [F∃E] + [FUNIV ]

5. KMP = (∀Ep) + (∃Ip) + (∃Ep) + [UNIV p�]

6. KMGP = (∀Ep) + (∃Ip) + [∃Ep′ ] + [UNIV p′ ]

7. KMP’ = (F∀Ep) + (F∃Ip) + (F∃Ep) + [FUNIV p]

8. KMGP’ = (F∀Ep) + (F∃Ip) + [F∃Ep′ ] + [FUNIV p′ ]

An addition of ID and (LL) to any of the above systems provides an ade-
quate ND formalization of suitable logic with identity. Moreover, in case of
four systems for free logic (KM’, KMG’, KMP’, KMGP’) one may also add
an axiom (1.4) ∃xEx which yields formalizations of free logics excluding
empty domains.

Remark 2.4 For those who dislike axioms in ND systems, the original
solution of Kalish and Montague from [158] may seem more adequate. They
use two inference rules for identity of the form:

(ID1) ∀x(x = τ → ϕ) / ϕ[x/τ ]
(ID2) ϕ[x/τ ] / ∀x(x = τ → ϕ)

Also, instead of the axiom (1.4), one may add to ND for FQL the
following rule:

(∀∃) ∀xϕ / ∃xϕ

One may easily prove for KM’ (or any other free version of the four
considered) that (∀∃) is derivable by (1.4) and that (1.4) is provable by
(∀∃) so these two solutions are equivalent. ♣



Chapter 3

Other Deductive Systems

The Chapter provides a set of preliminary notes to the next one, where
several forms of extended ND systems are discussed. These nonstandard
forms of ND are strongly based on solutions occuring in different kinds
of deductive systems. Therefore we need to recall some basic information
concerning them, which is taken up successively in two sections: the first
presents sequent and tableau calculi, systems strongly connected with ND;
the second deals with systems popular in automated theorem proving like
resolution and Davis/Putnam procedure. It happens that the latter systems
are based on the application of cut, whereas the former rather tend to
eliminate this rule in practice.

It should be noted that the presentation of different types of deductive
systems has an elementary character and is limited in two senses. From the
variety of systems we have selected only those that are used further as the
source of inspiration in building the enriched versions of ND, particularly in
the setting of formalization of modal logic. In result many important kinds
of deductive systems like connection calculi, goal oriented proof systems or
refutation calculi, are not taken into account. Either we do not know how
to take advantage of them for the needs of ND (which is not to say that it
is not possible!), or they were not used in modal logic, at least not in the
way suitable for our purposes. Moreover, we focus only on some theoretical
aspects of the discussed systems that are vital for us. In particular, we
focus upon the cut rule and its importance for strategies of proof search,
and to some related properties of rules like: subformula property, analyticity,
confluency.

The last section of this Chapter contains a discussion of some complexity
problems connected with cut and its elimination or bounded application.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 75
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 3,
c© Springer Science+Business Media B.V. 2010
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Again, because of the rudimentary character, much of this Chapter may be
skipped in the first reading and consulted when necessary in further lecture.

3.1 Sequent Systems and Tableaux

For an analysis of the range of possible extensions and applications of ND
a comparison with other kinds of DS’s is required. In order to facilitate the
reader a study of more general forms of ND introduced in the next Chapter,
we recall here the basic information about systems that are the source of
inspiration for these extensions. They fall into two groups.

At first, let us take a look at systems being closely related to ND, i.e.:
sequent calculi (SC) and tableau systems (TS). Currently, SC’s are rather
more popular in theoretical considerations on proof theory, whereas TS’s
seem to be more often used in practical applications. But, since 80s, they
have been even treated as serious rivals to the resolution on the field of
automated theorem proving. In fact, these calculi have much longer history
than the resolution, and also the earliest working examples of automated
theorem provers were based on them.

The first form of SC was invented by Gentzen in the 30s as a result
of the research on the alternative to Hilbert systems. His seminal paper
[109] contains two such systems (for classical and intuitionistic logics): ND
and SC. The proper aim of his investigation was, in fact, the construction
of ND-system. He defined SC as a kind of supplementary formalization
of only theoretical character, needed to prove the equivalence of ND with
axiom systems, and to establish some properties of proofs in the former
system. But his famous Hauptsatstheorem, better known as cut elimination
theorem, opened the way to define direct proof search procedures (Hintikka
[131] and Beth [27] – cf. the next subsection) and the construction of first
automated theorem provers (Wang [279] and Prawitz [221]).

Below we briefly describe some variant of SC, and then we show how
different forms of tableau systems may be introduced as kinds of refinements
of SC. In particular, we will focus on some important (from the proof search
perspective) properties of these systems, like analyticity or confluency.

3.1.1 Sequent Calculus

The name of SC refers to the items on which the rules of the system are
defined. We have already introduced the concept of a sequent as a pair
of sets of formulae, but one should remember that, very often, these are
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conceived rather as multisets or even sequences of formulae, as in the original
Gentzen’s solution.1 To our aim sequents built from sets (or rather from
C-set and D-set) are sufficient and this, additionaly makes the comparison
with TS’s easier. Consequently, the version of SC presented below differs
from the original version of Gentzen, in particular, there is no ordinary
Gentzen’s structural rules of contraction and permutation. The detailed
presentation of the evolution of Gentzen system and of several variants of
SC’s may be found in many places, e.g. in Kleene [162].

The calculus consists of one schema of axiomatic sequent and the set of
rules enabling deduction of a new sequent (conclusion-sequent) from one or
two sequents (premise-sequents). Here is a list of rules adequate for CQL:

(AX) ϕ⇒ ϕ

(Cut) Γ⇒ Δ, ϕ ϕ,Γ⇒ Δ
Γ⇒ Δ

(W⇒) Γ⇒ Δ
ϕ,Γ⇒ Δ (⇒W ) Γ⇒ Δ

Γ⇒ Δ, ϕ

(¬⇒) Γ⇒ Δ, ϕ
¬ϕ,Γ⇒ Δ (⇒¬) ϕ,Γ⇒ Δ

Γ⇒ Δ,¬ϕ

(∧⇒) ϕ,ψ,Γ⇒ Δ
ϕ∧ψ,Γ⇒ Δ (⇒∧) Γ⇒ Δ, ϕ Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ∧ψ

(∨⇒) ϕ,Γ⇒ Δ ψ,Γ⇒ Δ
ϕ∨ψ,Γ⇒ Δ (⇒∨) Γ⇒ Δ, ϕ, ψ

Γ⇒ Δ, ϕ∨ψ

(→⇒) Γ⇒ Δ, ϕ ψ,Γ⇒ Δ
ϕ→ψ,Γ⇒ Δ (⇒→) ϕ,Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ→ψ

(∀⇒) ϕ[x/a],Γ⇒ Δ
∀xϕ,Γ⇒ Δ (⇒∀)1 Γ⇒ Δ, ϕ[x/a]

Γ⇒ Δ,∀xϕ

(∃⇒)1 ϕ[x/a],Γ⇒ Δ
∃xϕ,Γ⇒ Δ (⇒∃) Γ⇒ Δ, ϕ[x/a]

Γ⇒ Δ,∃xϕ

Side condition:

1. a is a parameter which does not occur in Γ,Δ and ϕ.

Usually the rules like (Cut) or both rules of weakening ((W ⇒) and
(⇒W )) are called structural since they do not exhibit any presence of logical

1In fact, the original system of Gentzen is defined on sequents formed from finite lists
of formulae, however this is not of importance here.
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constants, whereas the remaining ones are called logical. Some terminology
concerning occurrences of formulae in rules schemata is also convenient. A
formula exhibited in the conclusion-sequent is called the principal formula
of this rule application, formula(e) exhibited in premise-sequent(s) is (are)
side formula(e), whereas the elements of Γ and Δ are called parametric
formulae. In case of (Cut) a formula, exhibited in both premises is called
cut-formula.

A proof of a sequent S in the system (�SC S) is defined in the stan-
dard way, as a binary tree of sequents (i.e. each node is decorated with a
sequent), where: (i) S is the root (ii) all leaves are axioms (iii) all other
nodes are constructed by means of the rules, i.e. premise-sequent(s) is (are)
a child(ren) and conclusion-sequent is a parent. Usually, actual proof search
is performed in the reverse order; we start with the root-sequent and sys-
tematically add above the premise-sequents of suitable rules.

Of course, the notion of a proof may be generalized in order to intro-
duce the relation of deducibility between sequents. It allows the notions of
derivable and admissible rules to be easily redefined for SC. Formally:

Definition 3.1 (Deducibility, Rules) Let Si denote a sequent, then:

1. S1, ..., Sk �SC Sk+1, iff there is a proof in SC of Sk+1, where leaves are
not only axioms but also sequents Si, i ≤ k (if k = 0 we have ordinary
SC-proof)

2. S1, ..., Sk / Sk+1 is SC-derivable, iff S1, ..., Sk �SC Sk+1

3. S1, ..., Sk / Sk+1 is SC-admissible, iff, if �SC S1, ...,�SC Sk, then �SC
Sk+1.

In particular, proofs of admissibility of several forms of cut in the context
of SC are usually called cut elimination proofs.

We record below, without a proof, a very useful lemma which helps
building SC-theories by addition of sequents or rules of different types, ac-
cording to the needs.

Lemma 3.1 If one of the following rules (or a sequent) is added to SC,
then the rest is derivable:
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1. ϕ,ψ ⇒ χ

2. χ,Γ ⇒ Δ / ϕ, ψ,Γ ⇒ Δ

3. Γ ⇒ Δ, ϕ / ψ,Γ ⇒ Δ, χ

4. Γ ⇒ Δ, ψ / ϕ,Γ ⇒ Δ, χ

5. Γ ⇒ Δ, ϕ and Γ′ ⇒ Δ′, ψ / Γ,Γ′ ⇒ Δ,Δ′, χ

6. Γ ⇒ Δ, ϕ and χ,Γ′ ⇒ Δ′ / ψ,Γ,Γ′ ⇒ Δ,Δ′

7. Γ ⇒ Δ, ψ and χ,Γ′ ⇒ Δ′ / ϕ,Γ,Γ′ ⇒ Δ,Δ′

8. Γ ⇒ Δ, ϕ and Γ′ ⇒ Δ′, ψ and χ,Π ⇒ Σ / Γ,Γ′,Π ⇒ Δ,Δ′,Σ

The lemma establishes interderivability (mutual derivability) of several forms
of rules. For simplicity, we have stated it for the case of three formulae; one
can easily establish suitable forms for less or more formulae. For example,
in case of two formulae we have only cases 1, 2, 3, and 6 with deleted ψ.

The concepts of satisfiability and validity of a sequent Γ ⇒ Δ may be
reduced to satisfiability (validity) of the corresponding implication ∧Γ →
∨Δ. One can easily check that this form of SC is sound; in order to prove
completeness it is enough to prove all the axioms of H-CQL.

In the version of SC considered here all the rules except (Cut), (W ⇒)
and (⇒W ) satisfy the so called subformula property. In SC it means that in
premise-sequents there are only subformulae of the conclusion-sequent. The
presence of three rules that lack this property is a serious drawback from
the point of view of practical applicability, if we treat SC as a tool for proof
search. But, fortunately, this inconvenience may be easily excluded. The
rules of weakening may be eliminated by introduction of more general form
of axioms. Notice that every sequent Γ ⇒ Δ, where Γ ∩ Δ �= ∅, is easily
deduced from original axioms just by repeated application of weakening.
The elimination of cut is not so easy and the original proof is rather involved.
It is the main result of Gentzen in [109] that every proof in SC may be
transformed into the proof in SC without any use of (Cut).

After these changes (the elimination of the three rules in question, and
the replacement of axioms by their generalized forms) we may define the
following proof-search procedure which, in case of CPL, is in fact a decision
procedure. We always start with the sequent we want to prove and construct
proof-tree applying rules in the reverse order, from conclusion to premises.
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Because the number of choices is always finite for CPL (finite number of
compound formulae in the conclusion-sequent that may be chosen as prin-
cipal formulae) so we have a procedure with bounded indeterminacy, which
may be easily transformed into fully deterministic algorithm, by adding
some order of choices (e.g. from left to right). In CPL this procedure, due
to the subformula property, always terminates yielding a finite tree which is
either a proof or a deduction of the sequent from some atomic sequents. In
the latter case we obtain a falsification of tested sequent by consideration
of any branch with nonaxiomatic atomic sequent as the leaf. It is sufficient
to define a valuation that makes all elements of the antecedent of the leaf
true, and all elements of the succedent false.

In case of CQL it is not so straightforward. One must additionally
redefine rules (∀⇒) and (⇒∃):

(∀⇒′) ∀xϕ, ϕ[x/a],Γ⇒ Δ
∀xϕ,Γ⇒ Δ (⇒∃′) Γ⇒ Δ,∃xϕ, ϕ[x/a]

Γ⇒ Δ,∃xϕ

An important feature of SC after these changes is invertibility of rules.
It holds for every rule that, if a conclusion is provable, then every premise
is also provable. It is very important for automated deduction, even for un-
decidable CQL, where we have no guarantee for termination. In particular,
the number of choices of a when the application of the above rules is taken
into consideration, is not bounded in general.

To sum up; the version of SC without (Cut) and weakening, and with
axioms and two rules for quantifiers suitably redefined has two important
properties called analyticity and confluency. Let us explain them briefly.

Analyticity

The term analyticity is applied in at least two senses in the field of inves-
tigation on proof methods.2 In one sense analytic systems are opposed to
synthetic ones. In analytic systems rules allow us only to decompose for-
mulae into their components, whereas in synthetic systems we have just
an opposite operation. In this understanding SC would be classified as a
synthetic system, if we follow the statement of definition of rules. But if
we follow the way we actually proceed when building proof-trees (“upside-
down” construction as described above), we should rather treat SC as an
analytic system. In this perspective ND-systems should be classified as of
mixed character, since their rules allow both decomposing and building up

2Poggiolesi [214] contains an interesting historical exposition of this concept.



3.1. SEQUENT SYSTEMS AND TABLEAUX 81

formulae from components.
We do not use this term in such a sense but rather say that a system is

analytic if it satisfies subformula property or some reasonable generalization
of it. But what does it mean for the system to satisfy this property; after
all, we have defined it only for the rules. In an obvious sense we say that
a system satisfies this property if all its rules have it. In this sense our
starting version of SC is not analytic but our final (cut-free) version is.
Very often, especially in earlier works concerning SC’s, analyticity in this
sense is identified with cut elimination. It is not true in general; there are
lot of systems, where cut is admissible but some other rules do not satisfy
subformula property and they are not eliminable.3

This sense of analyticity, called further strict analyticity, may be liber-
alised in order to cover also some systems that, on the level of calculus, are
not (strictly) analytic. Even if not all rules satisfy subformula property, we
may require, on the level of realization, that it holds for all admissible proofs.
It means that every application of a rule in a proof, even if it is building
up (synthetic) rule, is restricted to use only elements of some well defined
finite set; typically subformulae of premises and their negations. Analytic-
ity in this sense implies the elimination of full indeterminacy in looking for
the next steps of proof construction; possible choices are strongly limited
to predetermined finite set. Obviously, every strictly analytical system is
analytical, but the opposite does not hold.

Confluency

The notion of confluency of the system makes sense only with respect to
such types of formalizations that allow for the definition of proof search
procedures. In case of SC it may be defined as follows:

Definition 3.2 SC system is confluent iff, if a sequent S is provable, then
any proof-tree with this sequent as the root may be extended in such a way
that we obtain a proof of S.

It is in fact a consequence of invertibility of rules. In practice it means
that no matter what choices we have made during proof-search, we finally
obtain a proof, if the input is provable. On the other hand, if some branch
ends with atomic but not axiomatic sequent, we are done negatively, we

3Cf. Display Calculus [280], or SC of Mints [190] for S5.
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know for sure that there is no proof. That’s why, confluent systems are very
convenient from the point of view of automated theorem proving. We are
not forced at some stage of proof-search for backtracking to earlier stages,
if we made “wrong” choices. Consequently, confluent systems are less ex-
pensive for the program memory. From the point of view of the result,
in confluent systems there are no wrong choices (although our choices may
have strong influence on the length of the obtained proof or the time needed
for performance).

3.1.2 Tableau Systems

If we think mainly on practical applications of a deductive system, then SC
seems to be rather complicated. We may treat as an obvious simplification
a redefinition of rules (and proof) implied by the actual practice of proof
search in SC: from conclusion-sequent to premise(s)-sequent(s). In this case
premises and conclusions exchange their roles, and a proof is defined as an
inverted tree; some authors prefer such formulation. One may also eliminate
sequents and introduce sets of formulae as basic items. In this case we have
two options: If in every sequent we move all formulae from antecedent
to succedent (by ⇒ ¬), then we obtain right-sided sequents of the form
⇒ ¬Γ,Δ. Converse operation gives left-sided sequents of the form Γ,¬Δ ⇒.
In both cases ⇒ is superfluous; we operate on D-sets in the first case, and on
C-sets in the second. The first solution was introduced by Schütte [244] as a
simplified form of SC, and independently by Rasiowa and Sikorski [228] as a
form of TS. The second solution was developed by Hintikka [131]. From now
on we will say, for simplicity, about Schütte (type) system (or format) and
Hintikka (type) system. With the help of generalized notation introduced
in Section 1.1., we may formulate the rules of both systems in the following
way.

Schütte system contains two rules:

(αS) Γ, α
Γ, α1 | Γ, α2

(βS) Γ, β
Γ, β1, β2

Hintikka system contains two rules:

(αH) Γ, α
Γ, α1, α2

(βH) Γ, β
Γ, β1 | Γ, β2

Both systems have a rule for double negation elimination:

(NN) Γ,¬¬ϕ / Γ, ϕ
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In both cases a proof for a set Γ is an inverted binary tree with this
set as the root, constructed by the application of rules, where every leaf
is a complementary set. Each system is dual to the other; Schütte system
is branching on α-formulae, whereas Hintikka system is branching on β-
formulae, which is the result of different interpretation of sets. Moreover,
Schütte system is direct in the sense that we use only direct proofs. If
we search for a proof of ϕ we start with a set {ϕ}, and complementary
set in each leaf is tautological (a disjunction containing an instance of the
excluded middle law). If we are restricted to the propositional part, and
we add in realization a condition that the procedure is applied until we
get an atomic set (only literals) in every branch, then Schütte system may
be seen as a particular form of realization of the procedure for obtaining a
conjunctive normal form (CNF) of ϕ known from the completeness proof of
Post. System of Hintikka is an example of refutation calculus, using only
indirect proofs. If we search for a proof of ϕ, we start a tree with {¬ϕ}
as the root, complementary set in each leaf is an instance of elementary
contradiction. On propositional level every tree with atomic leaves gives a
recipe for disjunctive normal form (DNF) of ¬ϕ.

Further evolution of TS’s was usually connected with the modification
of Hintikka approach and led to additional simplifications. From the point
of view of practical pen and paper application, especially in teaching logic,
tableaux using sets are far from being ideal because it is still connected with
tedious and boring practice of rewriting parametric formulae. The solution
to this problem is provided by the version of tableaux introduced by Beth,
commonly called Beth diagrams [27] and its simplifications due to Lis [178]
and Smullyan [261].

The version of Beth is free from rewriting parameters but obtained di-
agrams are often difficult to read in case of many branchings. A tableau is
divided on two parts with formulae assumed as true on the left and formulae
assumed as false on the right. Thus, when testing provability of a sequent
we write all elements of the antecedent in the left part and all elements of
the succedent in the right part. The application of rules leads to writing
further formulae to suitable parts of a tableau and, in case of β-formulae,
to the introduction of additional divisions of a tableau. Proof is obtained
if in every part of a tableau we get the same formula on both sides, which
exhibits contradiction. We do not describe this form of representation of TS
in detail but rather focus on the solution of Lis/Smullyan. In this version,
we build binary (inverted) trees from single formulae (not sets) as nodes. A
proof-tree for a sequent ϕ1, ..., ϕk ⇒ ψ1, ..., ψn starts with a branch having
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k + n nodes – all elements of the antecedent and negated elements of the
succedent.4 We extend a tree applying the following rules:

(α) α
αi where i ∈ {1, 2} (β) β

β1 | β2
(NN)5 ¬¬ϕ

ϕ

Generally, the rules of inference applied in tableau systems for extend-
ing (and branching) a proof-tree will be called rules of expansion. A tree
containing a pair of complementary formulae in every branch is a proof of a
sequent, whereas a tree with at least one open (no complementary formulae)
and finished branch (no application of expansion rules yield new formulae),
provides a falsifying interpretation. It is one of the most popular forms of
TS for classical logic (and many nonclassical as well), so in the remaining
part of the book it will be used as a natural point of reference when talking
about tableaux.

Systems of sequents or tableaux described above will be called standard.
All of them are analytic and confluent, although in case of tableau systems
(except Beth variant) analyticity should be understood as the restriction
of choices in proof search not only to subformulae of an input but also
to their negations. The qualification “standard” is mainly for contrasting
them with some forms of SC’s and TS’s that were introduced later. Many
of these nonstandard systems were developed to obtain the formalizations
of nonclassical logics. In these calculi we meet an essential enrichment of
the standard formal apparatus obtained in several ways; we will introduce
some such “nonstandard” calculi for modal logics in next chapters. Also, an
intensive development of automated theorem proving based on tableaux in-
troduced several forms of TS seriously differing from the systems described
above. Some of them are in fact good examples of hybrid systems combining
TS with resolution or connection calculi. We do not present these refine-
ments since automated deduction is not our aim; one may find excellent
surveys in Hähnle [120] or in papers (e.g. Letz’ contribution) from [121].

4In fact, both authors prefer metalinguistic devices: Lis uses + for assertion and –
instead of negation, Smullyan uses prefixes T and F.

5In what follows we will sometimes use the same name for different variants of essen-
tially the same rule in related systems if it does not cause misunderstanding.
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3.2 Resolution and Davis/Putnam Procedure

Both systems discussed in this section are not very close to ND paradigm,
but they are important for automated theorem proving. It is a fact that in
this group of systems, the dominant role is played by calculi that use some
forms of cut, in contrast to SC or TS. In particular, cut is present explicitly
as a (propositional) resolution rule in resolution systems. In other systems
from this group, like Davis/Putnam procedure (DP) or connection systems,
its presence is less visible but also essential. Although resolution and DP
are commonly seen as having nothing in common with ND, we will show in
the sequel that this may be easily changed. The important point is that ND
is essentially based on the (implicit) application of cut (e.g. by transitivity
of inferences but not only), similarly as systems discussed in this section.
The main difference lies in the fact that both resolution and DP is working
on clauses. But why not to think that ND can be defined on clauses, as
well?

3.2.1 Resolution

Since Robinson introduced the first form of resolution in 1965, it has become
almost an industrial standard in the field of automated theorem proving. An
excellent and detailed exposition of this method may be found elsewhere,6

so we will be very brief. The popularity of resolution is a consequence of its
striking simplicity. In the simplest form for CPL it is just the application of
a special form of cut, called the resolution rule, to the set of atomic clauses,
until we get an empty clause (⊥) or irreducible set of literals. It may be
described in three steps:

1. Negate tested formula (or make a conjunction of premises and a nega-
tion of a conclusion, if testing an argument).

2. Transform an input to conjunctive normal form (or C-set of clauses).

3. Apply successively to the set of clauses a rule of resolution (Res) of
the shape:

Γ, ϕ ; Δ,−ϕ / Γ,Δ

6E.g. a classic Chang and Lee [68]; particularly usefull presentations for our purposes
are Gallier [101] and Fitting [95].
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If after n applications of (Res) to the set of clauses we obtain an empty
clause (⊥), then tested formula is tautological (or argument valid); otherwise
we can define a falsifying valuation.

Enrichment of propositional resolution with skolemization and unifica-
tion gave the most popular method of automated theorem proving for first-
order logic, despite the undecidability of this logic. In 70s it was an unques-
tionable leader in this field and almost all provers were based on some form
of this system.7

But despite these advances, the application of resolution to nonclassi-
cal logics, and particularly to modal logics has shown serious limitations.8

The basic problem is connected with the lack of simple normal forms for
modal languages. In modal logic usually normal forms are complex and the
resolution must be performed inside the scope of modal operators and even
in propositional logic it requires some form of skolemization (cf. e.g. the
system of Enjalbert and Fariñas del Cerro in [84]).

Problems with modal normal forms were responsible for great popular-
ity of indirect applications of resolution methods to modal logics. They
are based on some form of translation of modal language into first-order
language or some other richer language (e.g. relation calculus, see [201]).
Schmidt and Hustadt [243] provide the detailed survey of different trans-
lation techniques applied for modal logics. Indirect approach offers many
advantages since we can apply ready to use provers and plenty of effective
strategies tested during the last 40 years of work on the optimization of
classical resolution.

On the other hand, the indirect resolution has some drawbacks con-
nected with the fact that decidable modal logics are translated into unde-
cidable first-order (or second-order) logic. This operation requires the in-
troduction of additional specific strategies for termination of the fragment
of this rich language that corresponds to the suitable modal language and
usually leads to implementations that show worse performance than tableau
based provers. But it should be noted that some recent investigations on the
indirect methods for some rich multimodal logics [196, 242] open new per-
spectives. In particular, by smart translation we can not only profit from
first-order resolution strategies but even develop tableau calculi for these

7Clearly, this success was not only the result of simplicity of the original approach
but also of the development of several optimization techniques and refinements of original
system. One may mention here the introduction of hiperresolution, linear resolution,
ordering of literals, selection function e.t.c.

8One can find a useful survey in [84, 10].
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logics of the same complexity.

Another sort of the resolution calculi for modal logics belongs to the
group of direct resolution methods (without translation), often called non-
clausal because they do not need any conversion of the input into a normal
form. We prefer to say that they use generalized clauses. Resolution sys-
tems operating on generalized clauses are in general more appropriate for
nonclassical logics since, as we have remarked, such normal forms are usu-
ally quite complicated. In fact, such non-clausal forms of resolution seem
to be more efficient even in classical logics, since they reduce complexities
connected with the first phase of translation.9 For example, in many-valued
logics systems of this sort were devised by Stachniak [262], in modal logic,
such systems were offered by e.g. Fitting [94], Abadi and Manna [1]. But
there are only a few systems of this sort, and they are developed for only a
few particular logics, so the general direct resolution approach for ordinary
modal logic is still to come.

There is but one more problem connected with the standard resolution.
Despite its simplicity it is rather not a friendly system for humans: neither
the actual search for a proof, nor even reading the results provided by a
machine, is easy. This is not a drawback if we are just interested in quick
response: is it provable or not? But if we are interested not only in the
result obtained for a given input but we want to see the actual derivation
we face a problem. It is of particular importance, if we are interested in
the construction of a proof itself, or in finding the simplest and most direct
deduction. It is also important for different kinds of checkers and other
interactive programs applied in teaching logic. In fact, recently some efforts
have been undertaken (see e.g. [137, 138, 196]) to make the resolution proofs
more readable.

Notwithstanding all the above-mentioned vices, the dominating position
of resolution in automated theorem proving remains stable. Fourty years
of investigations has brought a huge number of optimizing strategies suit-
able for resolution. In fact, many of them were also successfully applied in
tableau based theorem provers. The possibility of transfer of these results
to ND systems seems really vital. We undertake this problem in the next
Chapter.

9In standard procedures of transformation it may lead to the exponential blow up,
but at present much better techniques are applied, cf. e.g. [196, 242] for methods of
structure-preserving reduction working in polynomial time.
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3.2.2 Davis/Putnam System

One of the first procedures for the automated deduction provided for clas-
sical logic is due to Davis and Putnam [77] (shortly called DP). It is still
considered as one of the most efficient method for CPL; the full version
for CQL was not as efficient as the resolution because of the lack of uni-
fication. As far as I know, DP was not applied in the field of nonclassical
logics, which however, does not mean that it is not good for that. We re-
call briefly this method following the presentation of [2, 95], where a more
detailed exposition may be found.

The application of DP also assumes that in the first stage we transform
a negation of a formula we want to prove into the set of atomic clauses.
The rest of the process has more complex character. We apply to the set of
clauses X some pre-processing rules that reduce it to the set of clauses X ′

that is satisfiable iff X is. These are the following:

1. We delete every tautological clause (i.e. including a pair of comple-
mentary literals (a rule of tautology).

2. We delete all clauses containing literal ϕ such that its complement
(−ϕ) is not present in any clause (pure literal rule).

3. We delete every clause Γ such that there is a clause Δ ⊆ Γ (subsump-
tion rule).

4. If in clauses Γ1, ...,Γk we have a literal ϕ, in clauses Δ1, ...,Δn we have
its complement, and there is unit clause {ϕ}, then we delete all clauses
Γ1, ...,Γk (also {ϕ}), and all clauses Δ1, ...,Δn change into clauses
Δ′

1, ...,Δ
′
n, without the complement of this literal i.e. Δ′

i = Δi−{−ϕ}
( unit literal rule).

All these operations were called rules in accordance with commonly applied
terminology although they are rather some strategies or complex techniques
of reducing the set of clauses.10 Only the rule of unit literal has a slightly
different character. It is partly a special case of subsumption rule (we delete
all Γi being supersets of {ϕ}), but one can easily see that it comprises n-time
application of the particular case of resolution:

(Res1) ϕ ; Δ′
i,−ϕ / Δ′

i

10In fact, all DP rules are also used as simplification strategies in resolution or tableau-
based provers.
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If the set of clauses X is unsatisfiable, then in many cases we may obtain
an empty clause as a result of the above “rules”, which constitutes a proof,
exactly as in resolution systems. But such a system is incomplete for CPL,
mainly because of the restricted form of resolution rule incorporated in unit
literal rule. When the systematic application of 1.–4. results in the similar
situation of the set of clauses X ′ to that one of 4., and moreover there is no
unit clause {ϕ} that would admit the application of the rule, we may apply
instead:

5. splitting rule, we distinguish two sets: X ′ ∪
{
{ϕ}

}
and X ′ ∪

{
{−ϕ}

}
.

It is evident that to each of the new sets we may apply a rule of unit
clause or other of the aforementioned rules. If it is necessary then we may
apply this rule again on the later stage to some of the distinguished sets.
Clearly, if we have applied a splitting rule at least once to obtain a proof,
we must get an empty clause in each set of clauses.

Our description of DP is informal and neutral with respect to particular
forms of realization and implementation. In Chapter 4 we will show that a
variant of this procedure may be easily simulated in some ND system thus
giving particularly readable derivations.

3.3 Cut and Complexity of Proof

In many respects tableau systems seem to surpass resolution systems. As a
matter of fact, their calculi contain many rules in contrast to the resolution,
which, from the point of view of implementation, may be seen as a draw-
back. But these rules have a uniform character, moreover, they are intuitive
and easy to use. In consequence, proof search in tableau systems is easy not
only for computers but also for humans (that is why tableaux are so popular
in teaching logic). Tableau systems do not require also preprocessing step
of transformation into normal form.11 This property perhaps decides about
the great popularity of TS’s in the formalization of nonclassical logics; good
evidence for this claim provide e.g. [121] or [222]. On the other hand, the
number of nonclassical logics having direct (i.e. no translation) formaliza-
tion in terms of resolution systems is – as we have already remarked – pretty
small (cf. [84] in case of modal logics).

In fact, the first automated theorem provers were based on sequent and

11In fact, modern tableau-based provers often work on clauses which simplifies adapta-
tion of strategies developed in the setting of resolution.
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tableau systems; one can mention here, among others, works of Prawitz or
Wang (cf. [221, 279]). But in 70s the resolution seemed to win in this field,
while SC’s and TS’s were almost forgotten by the specialists in automation.
A look at some popular books on automated theorem proving from these
years, like very influential [68, 179] suffices to see that SC’s and tableaux are
completely neglected. First attempts at comparison of resolution with SC
or tableaux are rather late, e.g. Gallier [101] or Avron [15]. In 80s tableau
systems begun to be treated seriously and seen as a rival to resolution,
but soon development of complexity theory has raised serious doubts. It
appeared that from the point of view of the (worst cases of the) lenght
of proofs, tableau methods are not serious rivals not only to resolution but
even to ordinary truth table method of tautology checking which, in common
judgement, is totally inefficient. Paradoxically, the source of the problem is
a phenomenon which for years was seen as a basis of their success, namely
cut elimination.

In standard SC of Gentzen or tableau system being essentially its in-
version,12 we have a clear situation: all the rules except cut have subfor-
mula property, so if we can eliminate cut we obtain an analytic system.
This observation has led to popular belief that cut elimination equals an-
alyticity. But this belief is wrong since cut elimination in itself does not
guarantee subformula property in systems having richer formal apparatus.
It is quite common in case of standard SC-formalizations for nonclassical
logics with the set of extra rules, or in case of nonstandard systems using
richer language, e.g. display calculi. In such generalized forms of SC there
are additional rules without subformula property, or additional complica-
tions connected with more complex structure of the calculus. For example,
in display calculus cut is eliminable and even logical rules satisfy subfor-
mula property, but to obtain a real analyticity of the system we need also
something like substructure property. So cut elimination is not a sufficient
condition for analyticity of the system. As we shall see, it is not even a
necessary condition, and even worse – it may be disastrous from the point
of view of efficiency of the system.

Since 60s a lot of SC’s and TS’s for which cut elimination was not
provable was devised. For many years it was felt as a great disadvantage of
these formalizations. Some positive sides of cut were noticed only recently.
Earlier it was only observed that for many sequent or tableau formalizations

12Note that this simplification applies to the formalization of classical logics; it is not
necessarily true on the ground of nonclassical logics, where many proposed SC’s and TS’s
are not in such direct relationship. In case of modal logics cf. Chapter 7 for details.



3.3. CUT AND COMPLEXITY OF PROOF 91

of some nonclassical logics we can extract some special applications of cut
that are necessary for completeness. (cf. Fitting [93] or Takano [269] for
some modal logics). But such compromises were treated as rather bad
solution.

The research on the complexity of proof procedures has shown however,
that even in systems where cut is completely eliminable, e.g. in classical
logic, some controlled applications of this rule may lead to the construction
of essentially shorter proofs. The source of the problem lies in the fact that
in standard cut-free TS we have often too much branching with the same
sequences of steps repeated. This may even lead to the exponential growth
of the length of proof tree.13

After some reflection it should not be as strange as it seems; cut is a rule-
realization of one of the most important properties of consequence relation –
its transitivity. We have already mentioned that in several systems this
property is expressed by means of several rules, but cut is one of the most
important. Abandoning this property seems counterintuitive, and involves
important costs on the side of simplicity and the length of obtained proofs.
In fact, it was the well known truth in the field of automated theorem
proving; resolution on propositional level is just a special form of cut. But
as we have remarked, for many years there were no traces of communication
between research on resolution (and automation) and research on SC’s and
TS’s (and philosophical logic).

What is really vital for us is the fact that the lack of cut elimination
does not exclude analyticity of the system. Here we mean not the strict
analyticity but the weaker notion introduced in Section 3.1. which does not
require subformula property of all the rules. It is sufficient if this property
holds for proofs, and this is possible if we can restrict the application of
rules to subformulae of proved sequent.

Definition 3.3 In a proof of Γ ⇒ Δ an application of a rule is analytic iff,
in premise-sequents there occur only formulae from the set of Subfor(Γ∪Δ).

For tableau system we have the following definition:

Definition 3.4 In a proof for Γ an application of a rule is analytic iff, every
conclusion belongs to the set of subformulae of premises of this proof (i.e.
Γ) closed under single negations.

13It was Boolos who for the first time paid an attention to this problem, see [51] and a
detailed discussion in D’Agostino [2] and Fitting [95].
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The notion of an analytic application of a rule may be defined for any
deductive system not only for SC or TS. Any system restricted on the level
of realization to such applications of rules will be called analytic. Clearly,
every strictly analytic system, i.e. containing only rules with subformula
property in its calculus, is analytic.

In particular, we can restrict admissible applications of cut in a system
to analytic only. For instance, as we have mentioned, the resolution rule is
a special form of cut, but in a system for classical logic its applications are
analytic. In fact, it is also a consequence of cut-elimination theorem but in
a generalized form (c.f. Avron [15]). Strong cut elimination theorem says
that every proof of Γ ⇒ Δ from the set of sequents S may be transformed
into a proof where all applications of cut are made on formulae which are
elements of S. Thus, in particular, for Γ = Δ = ∅ and S consisting of only
atomic sequents, strong elimination theorem guaranties that ⇒ is deduced
from S only by the application of cuts. But it is just a notational variant
of the claim that if S � ⊥, then it may be proved by the applications of
resolution only.

The investigations on sequent and tableau systems for the nonclassical
logics have also shown that although cut is not always eliminable we can
often restrict its use to the analytic instances and still obtain a complete for-
malization. Sometimes the conditions for the admissible applications of cut
must be more liberal, e.g. the closure of the set of respective subformulae not
only under single negations but also under modal operators. The examples
of such generalized analytic systems for some modal logics were proposed
by Takano [269] and Fitting [93] (cf. also Goré [117]). In the setting of ND
systems, proofs of normalization theorems (cf. the next Chapter) show that
such formalizations may be also transformed into analytic versions without
loss of completeness.

So the absolute cut elimination is for automated theorem proving not
only dispensable but may be even troublesome. The recognition of advan-
tages of cut caused that in many TS’s, analytically restricted cut is added
as an additional rule even if the system is complete without it. Cut in TS’s
defined on sets of formulae (Hintikka or Schütte systems) has the following
form:

(R-Cut) Γ
Γ, ϕ | Γ,−ϕ

Letter “R” means that this is a regressive form of cut in contrast to
resolution rule or (Cut) in SC which are progressive.
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In Smullyan’s system cut has a form of a branching non-premise rule, so
it is convenient to display it as follows:

(PB)

B
�

�
�

�
−ϕ ϕ

Where B is a branch extended by the application of a rule. The name
(PB) (the principle of bivalence) is applied on the ground of the system
KE introduced by Mondadori and D’Agostino [2]. In KE, cut is a primi-
tive (not eliminable) and unique branching rule in the system. The name
(PB) refers to one more (semantical) interpretation of cut, as a formal-
ization of the property of two-valuedness or the law of excluded middle.
The remaining branching rules from the tableaux were substituted in KE
by their linear (nonbranching) counterparts. Proofs in KE are then binary
trees constructed as in Smullyan’s system but instead of (β) we apply ND
rule:

(βE) β, −βi / βj , where i �= j ∈ {1,2}

KE-proofs are elegant and simpler than proofs in tableau systems. Proof
of completeness of KE with respect to classical logic requires only the ana-
lytic applications of cut, moreover of a specified character. [2] contains the
description of a proof search procedure that uses (PB) only if there is β-
formula on the branch such that neither βi (for i = 1 or 2) nor the other
premise needed for the application of (βE) is present on the branch. In this
case we apply (PB) for βi and its complement. It is easy to show that in KE
one can p-simulate every proof-tree in Smullyan’s TS. If tableau proof-tree
has n nodes and k forks (i.e. k uses of β-rules), then its KE-simulation has
at most n + k nodes, because even if for every application of (β) we must
use (PB) then in every fork we have only one additional formula in one
branch, namely the complement of the chosen βi.

On the other hand, TS without some form of cut or other additional
techniques,14 is not able to p-simulation of KE proof-trees. D’Agostino
exhibits an example for which TS-simulation requires exponential increase
of the length of KE proof-tree. Since KE may p-simulate resolution, DP,
ND (in tree format), and all these systems may p-simulate KE, then from
this point of view they are of the same complexity measure (sometimes

14For example, the use of lemmata or merging, cf. [2].
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called relative proof length complexity), whereas standard TS belongs to the
“worse” class of systems. It is also evident that exactly the possibility of
cut applications is the property allowing shorter proofs.

This is not however, the reason to maintain that TS is generally less
efficient than KE, or other systems with cut. There are good reasons to
think that relative proof length complexity is not a very good measure
for evaluating practical efficiency of a system. One should remember that
systems producing “short” proofs may be less efficient because proof search
space may be larger, as we remarked in Section 1.2.4.15 Also, in case of
automatization, an implementation may be more involved. In fact, this is
the case of KE, when compared with ordinary TS – we will say more about
it in the next Chapter. In case of modal logics, the applications of cut may
cause even more troubles, as we will see in Chapter 10. Anyway, in ND we
cannot get rid of cut and that is why we rather focus on the advantages of
its use.

The place is appropriate to recall DP as an example of the system, where
cut is applied in both ways – regressively (splitting rule) and progressively
(unit literal rule). For instance, in resolution systems cut has only progres-
sive form, whereas in KE it has only regressive form (as (PB)). Hence DP
is a system with the maximal exploitation of cut and perhaps this is the
source of its efficiency.

Systems with primitive and not eliminable cut will be called cut-systems
in the sequel. The intersection of the class of analytic systems and cut-
systems is – as we have noticed – not empty. Any axiomatic Hilbert-style
system or standard ND-system is a sample of non analytic cut-system, where
(MP ) is a form of cut. Standard TS system for CPL is an example of
analytic system without cut. KE and resolution systems belong to the
intersection of these two classes; they are analytic but the elimination of
cut makes them incomplete.

It is not accidental that we have paid so much attention to these ques-
tions. In what follows we will be interested in cut-systems, that are analytic
or may be tailored to this form on the level of realization without loosing
completeness. In particular, we will show that ND systems for CPL and
for many modal logics may be constructed in analytic version.

15For more about it cf. e.g. Hähnle [120] and especially a study of Plaisted and Zhu
[211], where formal treatment of proof search space is provided for many types of calculi.



Chapter 4

Extended Natural Deduction

In this Chapter there is a continual emphasis on the application of ND as a
tool of proof search and possibly of automation. In particular, we take up
the question of how to make ND a universal system. In order to find satis-
factory solutions we compare ND with other types of DS’s. Although ND
systems are rather rarely considered in the context of automated deduction
they presumably accord with each other and ND systems may be turned
into useful automatic proof search procedures. Moreover, even if there are
some problems with the construction of efficient ND-based provers, it seems
that for the widely understood computer-aided forms of teaching logic, ND
should be acknowledged. A good evidence for this claim is provided by the
increasing number of proof assistants, tutors, checkers and other interactive
programs of this sort based on some forms of ND. Section 4.1. is devoted
to the general discussion of these questions, whereas the rest of the Chap-
ter takes up successively the presentation of some concrete, universal and
analytic versions of ND for classical and free logic.

In Section 4.2. we define the most restrictive system called AND1 (ana-
lytic ND1). It is modelled after D’Agostino and Mondadori [2] KE system.
Although the adequacy of AND1 with respect to CPL is shown indirectly by
p-simulation of KE, we also present a proof search procedure that yields a di-
rect completeness proof and decision procedure. In contrast to standard ND,
this variant is universal, i.e. we may not only produce proofs but also provide
countermodels through the saturation process. On the other hand, purists
may contend that AND1 is not a genuine ND system, since it excludes
introduction rules and proceeds only by indirect proofs. In Section 4.3.
we present more flexible version of analytic ND called AND2. This time
we do not provide a mechanical proof search procedure but rather discuss

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 95
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 4,
c© Springer Science+Business Media B.V. 2010
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some examples showing that it may produce shorter proofs than AND1.
The last section contains the presentation of a generalized form of ND

system called RND (resolution based ND) operating on clauses. It is more
powerful than both AND systems since it allows us not only to p-simulate
KE and tableaux (like AND1) but also to simulate clausal systems like
resolution or Davis/Putnam procedure. RND offers many advantages over
other ND systems. First, it has strikingly simple structure on the level of
calculus with only one general proof construction rule. Moreover, this sim-
ple generalization leads to the possibility of building much shorter proofs
than standard ND or its analytical versions. Finally, it is possible to ap-
ply in RND the efficient strategies of proof search tested on the ground of
resolution.

4.1 Analytic and Universal Versions of ND

In this Chapter, as in this book in general, we do not pursue the subject of
automated theorem proving but rather focus on the practical pen-and-paper
application of ND. Nevertheless, some remarks on the existing programs
utilizing ND systems are in order.

ND systems are commonly believed to be relatively seldom considered in
the context of automatization of proofs. In the first instance, ND is treated
as the most flexible tool of deduction. In order to make derivations short,
and easy to construct, a lot of freedom in proof construction is allowed which
is realized in different ways, as we noted in Chapter 2. But what is good (in
the sense of rich resources) for deduction is not as good when automation
is in mind, because such features like flexibility of proof construction or
naturalness of rules are not always in accordance with the requirements of
automated deduction. In fact, sometimes they are even felt as being in
conflict. Mainly for this reason up till now, most provers have been based
on resolution and tableau systems. ND was commonly seen as a proof
technique not easily adaptable for automatization.

That it is only a prejudice, and ND may be successfully applied in
the field of automated deduction, should be obvious by now. Kalish and
Montague [159] presented automated procedures for ND already in 1964,
Smullyan [259] proposed another one in 1965. The former was based on
the Kalmar completeness proof and not very satisfactory, but since then
a great progress was made.1 At present there are a lot of ND-systems of

1One may consult in this matter e.g. papers collected in the monographic volume of
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sufficiently “mechanical” character, and many programs based on them, in-
cluding provers, proof assistants and general environments for implementing
several logics often called logical frameworks. Generally, by provers we mean
programs searching for (dis)proofs with no human help, whereas proof assis-
tants or checkers are interactive programs where humans build derivations
with some occasional help of a computer. It seems that in the business of
pure provers ND-based programs are rather rare, but their impact on the
remaining fields is still growing. In fact, a clear division between different
types of programs is difficult to obtain. For example proof checkers are in
principle restricted to checking validity of lines introduced by the user con-
structing a proof, but there are many programs called proof checkers that
generally give at least some advice on proof search, and sometimes even
fully automated search is provided. An early system EXCHECK/VALID
due to Suppes is perhaps the first of such proof assistants; one may mention
also Mizar, BERTIE, and many others. Let us, for the sake of example,
and with no pretension to the exhaustive presentation, recall some of the
proposals:

• THINKER of Pelletier is fully automated prover being an implementa-
tion of KM system. [204] contains detailed presentation of the system
and proof search procedure implemented in the prover.

• OSCAR of Pollock [216] is an automated theorem prover which works
not only in classical first-order logic but also implements some forms
of defeasible reasoning.

• Symlog of Portoraro. Although the program is an interactive proof
assistant it is also equipped with a theorem prover that helps students
to construct proofs. [219] provides a discussion of the set of proof
search strategies involved in the program.

• MacLogic of Dyckhoff. It is both proof assistant and proof checker
implementing not only classical logic but also modal logics.

• PROVER of Bolotov, Bocharov, Gorchakov and Shangin [46] for first-
order logic, recently extended to some propositional temporal logics.

• CMU Proof Tutor of Sieg [254] is an example of automated proof
engine showing how to build normal proofs (see below) directly. This
is in contrast to standard results concerning normal proofs that are
obtained via the transformation of ready non-normal proofs.

Studia Logica (1998) devoted to automated ND.
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The number of programs is one thing; the other is their efficiency. Sur-
prisingly enough it appeared that some of the proposed provers may solve
many hard problems faster than the resolution based engines.2 It seems that
we have sufficiently strong evidence for claiming that ND is not worse for
automatization than tableaux or resolution and, in case we are interested
not only in obtaining fast result but also in its readability, it may work even
better. In fact, all these methods are closely related, which is sometimes
obscured by several details of minor importance, connected rather with the
form of presentation than with the content of a system. One of the aims
of this Chapter is to show that ND may work equally well as standard
resolution or tableau systems because it may step-wise simulate them.

4.1.1 Analyticity

The standard version of ND presented in Chapter 2 is highly redundant,
which makes reasonable the expectation that we may apply in it different
strategies of proof search. On the other hand, it has at least two serious
drawbacks: it is not universal and not analytic.

In standard ND, if we cannot find a proof of a formula we are not able
to establish its status: is it not a thesis or are we not clever enough to
find a proof? Also the construction of many rules gives no clues for proof
search in ND. In fact, these requirements (i.e. universality and analyticity)
are independent but it is desirable to have a system having both. We show
that ND may be reformulated in such a way that it is universal – we can do
both: prove theses and extract falsifying models for non-theses on the basis
of unsuccessful derivations. What is more, on this basis it is possible to
define mechanical procedures of proof search not only for classical logic but
also for modal logics thus obtaining working decision procedures in decidable
cases. In fact – as we have mentioned above – already [159] contains some
algorithm of proof search for their ND system. However, it is a procedure
based on the Kalmar’s version of completeness proof and, from the point of
view of efficiency, it is not very interesting. Below we present the solutions
conceptually close to the proof search procedures defined for KE.

The fact that not all rules of ND satisfy subformula property does not
exclude the possibility that the system is analytic in the sense explained in
Chapter 3. There is a rich tradition of investigation on analytic versions
of ND initiated by Prawitz [220] (independent result is in Raggio [227])

2Cf. e.g. remarks on performance of OSCAR in [216] and more substantial comparison
of OSCAR and OTTER performance in [217].
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and developed by many logicians under the heading of normalization of ND
proofs, or the existence of ND proofs in normal form.3

To give a reader some idea of normal proof in possibly simple way, let
us assume for the moment that we deal with some T- and F-system for
propositional logic with only → and ∧, then:

Definition 4.1 A proof D is in normal form iff no formula in it is both the
consequence of an introduction rule and a major premise of an elimination
rule for the same constant.

The combinations of applications of the rules excluded in normal proofs,
lead to the introduction of the so-called maximum formulae in the proof
which is a form of redundancy. Hence, we may simply say that a proof is
normal if it has no maximum formulae. Proofs in normal form are analytic
in the sense that they satisfy subformula property of the following kind:

Let D be a normal proof of Γ � ϕ, then every formula ψ ∈ D is a
subformula or negation of a subformula of Γ ∪ {ϕ}

Notice that although all normal proofs are analytic, the converse does
not hold. Analyticity of normal proofs follows from the fact that normal
proofs have no detours and lead directly from premises to conclusion by,
first, breaking compound formulae into pieces, and then, building up an
expected input. In this simplified account we have omitted subtleties con-
nected with the rules for disjunction4 and negation (or ⊥ which is often
treated as primitive in normalizable ND systems). Several normalization
proofs for various versions of ND differ in this respect; in particular, differ-
ent sets of rules for ⊥ were provided to obtain a result.

An interesting solution is offered by Negri and von Plato [193], who
present a version of normalizable ND satisfying a stronger property to the
effect that all major premises of elimination rules are assumptions in normal
proofs. This is obtained at the expense of introducing generalized elimina-
tion rules since the standard elimination ones (except Gentzen’s [∨E] and
[∃E]) also complicate matters. These new elimination rules are all proof
construction rules of the form:

3Von Plato discovered that Gentzen himself has proved a normalization theorem for
intuitionistic ND; he published Gentzen’s version in [213].

4For example, the original proof of Prawitz is for the system with rules for ⊥,∧,→, ∀;
the solution for full first-order language was provided much later by Seldin [247] and
Stalmarck [263].
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[∧E] If Γ, ϕ, ψ � χ, then Γ, ϕ ∧ ψ � χ
[→ E] If Γ � ϕ and Δ, ψ � χ, then Γ,Δ, ϕ→ ψ � χ
[∀E] If Γ, ϕ[x/τ ],� χ, then Γ,∀xϕ � χ
[¬E] If Γ, ϕ � ψ and Δ,¬ϕ � ψ, then Γ,Δ � ψ

Incidentally, one should notice that still another combination of inference
and proof construction rules for quantifiers is provided in this system. Both
introduction rules are inference rules, whereas both elimination rules are
proof construction rules (cf. Remark 2.1).

There are a lot of constructive proofs of normalization theorems for sev-
eral ND systems showing for many logics that every proof in the respective
system may be transformed into a normal proof. Theoretical value of these
results is enormous, but from the practical point of view they are insuffi-
cient.5 The situation is similar to that in sequent calculi; the constructive
proofs of cut elimination show that we can always construct proofs using
only analytic rules but they do not give any clue how to do it. What we
need from the practical point of view is a proof search procedure for doing
analytic proofs just from scratch.

Since we focus on the practical side of deduction, we dismiss the study of
matters connected with the normalization of ND systems. A good exposition
of these problems may be found, for example, in locus classicus Prawitz
[220], in Troelstra and Schwichtenberg [276] or Negri and von Plato [193].
Very readable, although not yet completed, account is provided by Restall
[232] on http://consequently.org/writing/ptp.

Instead, we describe some systems admitting analytic proofs only (and
not only proofs). First, we introduce two analytic versions of standard ND:
AND1 and AND2. The former is more restrictive but simpler; it is based
on KE system. The latter is more flexible since the repertoire of primitive
rules is richer. Completeness of both systems is easy to prove indirectly, by
p-simulation of all KE-proofs (in fact, we show stronger result – step-wise
simulation of every KE-proof tree), but for AND1 we also prove complete-
ness directly because it will be needed for later modal extensions.

4.1.2 KE and ND

It is not difficult to notice a close relationship between KE and ND systems.
It is apparent that ND α-elimination rules are ordinary tableau rules of the
sort, whereas β-elimination rules are non-branching counterparts of ordinary

5The exception for classical logic is the work of Sieg mentioned above.
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tableau branching rules. It is also obvious that suitable KE β-rules are
elimination rules of ND system, thus all linear KE rules are ND inference
rules. It makes KE, in a sense, closer to ND than to tableau systems. The
only difference between KE and ND is branching introduced by (PB). But
we can go a little step further and get rid of branching at all. Clearly, we can
change trees into linear sequences in theory, but it is also easy in practice.
Moment’s reflection shows that everything that is derivable in KE by (PB)
(or regressive cut in general) may be derived in ND by [RED] with indirect
assumption, as is shown in the following schemata:

A)

B
�

�
�

�
−ϕ ϕ

�−→
D
SHOW: ϕ

−ϕ

B)

B
�

�
�

�
−ϕ ϕ
B′

�−→
D
SHOW: ϕ

−ϕ
D′

C)

B
�

�
�

�
−ϕ ϕ··
⊥

B′

�−→
D
SHØW:ϕ

−ϕ
··
⊥
D′

D)

B
�

�
�

�
−ϕ ϕ··
⊥

··
⊥

�−→
D
SHØW:ϕ

−ϕ
··
⊥

··
⊥

Thus by induction on the number of application of (PB) one can step-
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wise simulate in ND every (open or closed) KE-tableau.
Although the idea is quite simple let us make it more precise and de-

fine a simple algorithm realizing the task. Recall that a part of a branch
between two forks is called a segment of that branch (cf. Definition 1.7 in
Section 1.1.5).

In case of an open tree we always choose the leftmost (or the shortest
if we look for optimal derivation) open branch. If it has only one segment
(no branchings), then we simply insert a suitable S-formula at the beginning
thus receiving an open derivation of depth 1. In case of a branch consisting of
more segments, we put a complement of the first formula in every segment as
S-formula at the beginning of a subderivation corresponding to this segment.
Every segment is thus an open subderivation. It is evident that for every
open branch of the length n and consisting of k segments, we obtain an open
derivation of the length n + k and depth k, without boxes and cancelled
S-formulae. So we obtain the optimal, in the sense of complexity, open
derivation for tested formula.

In case of a closed tree, we will apply a procedure that is a particular
case of transformation of trees into lists by algorithm PREORDER (cf. e.g.
Aho and Ullman [3] or early Smullyan’s [260] procedure of transformation
of trees into the so-called nest structures). It means that we walk down
from the root in a depth first manner from left to right. Because on every
fork we first go to the left, then return, go to the right and return, we
eventually pass through every fork three times. The order of visits dictates
the operations we must perform.

the first step: Rewrite the first segment adding the first opening S-formula.

if it is the whole tree, then box the whole derivation, cancel prefix
“SHOW:” and stop
else goto the next step.

the n-th step splits into three cases of visit in a fork.

1. the first visit: write the first element of the right segment as S-formula
and the whole left segment as a subderivation, then do for this segment the
following moves:
1.1. if it is the last segment of the branch, then close this subderivation in
a box, cancel prefix “SHOW:” of the last S-formula and goto the last fork

else repeat 1. on the next fork.

2. the second visit: add the right segment without the first formula as a
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continuation of the current derivation, next do step 1.1. for this segment.

3. the third visit:
if it is the last fork in the tree (the rightmost one), then stop
else goto the preceding fork.

After performing this procedure on a closed KE-tree we obtain ND proof
of the length n+ 1 (where n is the number of nodes of simulated KE-proof)
and the depth ≤ k, where k is the maximal number of segments of the
branches of this tree. We should note that in KE proof-tree we may have
segments containing only one node. If it is the right segment, then after its
subtraction (step 1. in the algorithm) we do not have any formulae in this
segment. In such cases step 2. is performed trivially, i.e. we immediately
go to the step 1.1.

For further considerations it is important to note that we can do reverse
transformations as well. Every derivation being a linear nested structure
may be turned into binary tree by treating, e.g. every subderivation as
the right segment, and the part of its parent derivation (starting with the
cancelled S-formula) as the left segment of the respective fork.

4.2 System AND1

Although we have shown that the full system of ND may step-wise simulate
every KE proof, it is obvious that only some of the rules are necessary for
that. Let us carefully examine what happen if we limit our ND resources
to those indispensable for simulation. In such a system we have:

1. elimination rules as the only inference rules

2. [RED] as the only proof construction rule

3. indirect assumptions as the only available assumptions

But this is not the whole story, as D’Agostino has proved that the com-
pleteness of KE for CPL requires only analytic applications of (PB).6 On
the basis of that we can admit only analytic applications of [RED] as the
only admissible proof construction rule.

The system thus obtained will be called AND1 (Analytical ND1). For-
mally, in our definition of derivation from Chapter 2 we must delete clauses

6In fact, only special sort of such analytic applications is needed. For details see
Section 3.3.



104 CHAPTER 4. EXTENDED NATURAL DEDUCTION

4, 6, 8, 9, and 12. Moreover, we add proviso that the only admissible S-
formulae are subformulae (or their complements) of the first S-formula. It
is sufficient to add this requirement to clause A; in the revised form it reads:

A’. “D⊕SHOW:ψ” is a derivation of ϕ, for any ψ which belongs to {¬ϕ}

In case we define a derivation of ϕ from Γ, we must, of course, replace
{¬ϕ} by Γ ∪ {¬ϕ}.

AND1 is adequate with respect to CPL. Soundness holds for any re-
stricted version of the full system from Chapter 2, whereas completeness
follows indirectly, from the completeness of KE and the simulation of all
KE proofs by AND1. At first sight the completeness is allegedly doubtful
as all the introduction rules are missing. But one should remember that
our generic ND system is redundant – no introduction rules are necessary
in AND1 as they are replaced by the elimination rules for the negated for-
mulae.

Since KE allows of p-simulation of every tableau (most directly in the
Smullyan’s version, cf. [2]), so does AND1. If we want a more direct rep-
resentation of tableau trees in ND we may add a new proof construction
rule which embodies the application of β-rules from TS. It has the following
shape:

[β] If Γ, β, βi � ⊥ , then Γ, β � βj , where i �= j ∈ {1, 2}

In fact, Smullyan [259] proposed analytic ND based on [β] as the only
proof construction rule. Admissibility of the above rule is easy to prove;
below we display the schema of elimination in any ND derivation.

Γ Γ
k β k β

...
...

l SHØW: βj [n, β] �−→ l SHØW: βj [n+ 1, RED]
l + 1 βi ass. l + 1 −βj ass.

... l + 2 βi (k, l + 1, βE)

n ⊥ (⊥I)
...

n+ 1 ⊥ (⊥I)

On the left we have the schema of the application of [β] in KM system,
on the right we have the same result but obtained via the application of
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[RED]; βi is obtained here by the application of (βE) to β and the indirect
assumption. So the elimination of every application of [β] adds only one
more line to a derivation and does not change its depth.

Let us note that in this way we may simulate the application of any
branching tableau rule in ND system. For every rule of the schema:

Γ, ϕ
Γ, ψ | Γ, χ

we may define ND proof construction rule of the shape:

If Γ, ϕ, ψ � ⊥, then Γ, ϕ � χ

This possibility will be thorougly exploited in the next chapters.

Clearly, in this way one may simulate not only TS for CPL but also for
the first-order logic. KM is particularly useful for that aim since its original
rule (∃E) is just like the respective rule of TS with side condition calling for
a “new” variable.7 It is a routine to prove DeMorgan laws in KM and on
their basis to prove derivability of elimination rules for negated quantifiers –
we leave it to the reader. Similarly, we may provide suitable rules for free
logic in KM’ (or KMP’): by means of DeMorgan laws (which are theses of
free logic, as well) we may establish derivability of:

(F¬∀E) ¬∀xϕ, / Ey ∧ ¬ϕ[x/y], where y is new
(F¬∃E) ¬∃xϕ, Ey / ¬ϕ[x/y]

With (F∀E) and (F∃E) they yield a complete set of rules for step-wise
simulation of TS for free logic.

But what with universality? We have already mentioned that an open
derivation for ϕ, as defined in Chapter 2, is not necessarily a disproof. In
general, in ND-system it is not. The same applies to restricted version AND1
but in the present variant we can construct a derivation for ϕ in such a way
that an open derivation is in fact a disproof of this formula. It should be
obvious, since we have proved that AND1 can simulate every KE-tree, and
KE is an universal system. But one should remember that a simulation is
not the same as providing direct procedure of proof search for the respective
system. The difference is like between proving cut elimination theorem for

7For those who prefer TS with rules introducing parameters instead of free variables
the system KMP may be more convenient.
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some SC by Gentzen method and direct proving of completeness of this SC
without cut applying Hintikka method. The former result shows that it
is possible “in principle” to build only analytic proofs, whereas the latter
shows how to do it. So, having established that our ND system can exactly
simulate KE-tableaux we are, in fact, more interested not in rewriting but
in the direct use of the system for generating proofs and disproofs. For that
we need a procedure that must eventually produce either a proof or an open
but completed derivation in AND1. As a by-product we get a direct proof
of both completeness and decidability for AND1-CPL. There are, at least,
two reasons for paying some attention to this question:

First, it will be particularly useful for further extensions of ND system
to modal logics. Many modal logics have analytic formalizations which
are in fact quite easy to simulate by ND system, so in this case we can
prove completeness indirectly. But not all logics considered later satisfy this
condition. For example, although bimodal logics of linear time have some
analytic SC or tableau formalizations, their simulation in ND is problematic.
So the solutions we propose in Chapter 9, require direct completeness proof
for these logics.

Second, the question of automated deduction in ND is interesting in
itself, since nested structures, like derivations, lead to some restrictions on
popular techniques applied in tableaux or resolution. Clearly, automated
deduction is not the subject of this book, and we are not going to suggest
that procedures of proof search defined in this Chapter and later, may be
rivals to the popular programs of automated deduction. Such claims would
require the implementation and testing of our procedures. That is why
the matters of efficiency are not requisite for us, instead we are trying to
offer algorithms as simple as possible. Some remarks concerning possible
optimizations will be offered, however, by the end of this Section.

4.2.1 Hintikka Sets

Let us briefly recall the notion of a downward saturated set and Hintikka
set needed for the completeness proof of AND1-CPL. For the sake of better
control over saturation process in ND, it is also convenient to separate a
weaker notion of linear saturation.

Definition 4.2 (Downward Saturated Set)

A. Γ is l-saturated (linearly saturated) for CPL, if the following conditions
are satisfied:
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1. if ¬¬ϕ ∈ Γ, then ϕ ∈ Γ,

2. if α ∈ Γ, then α1 ∈ Γ and α2 ∈ Γ,

3. if β ∈ Γ and −βi ∈ Γ, then βj ∈ Γ; for i �= j ∈ {1, 2};

B. Γ is downward saturated for CPL, if the following conditions are satisfied:

1. if ¬¬ϕ ∈ Γ, then ϕ ∈ Γ,

2. if α ∈ Γ, then α1 ∈ Γ and α2 ∈ Γ,

3. if β ∈ Γ, then β1 ∈ Γ or β2 ∈ Γ.

It is straightforward that every downward saturated set is l-saturated, but
the opposite does not hold, since condition B.3 implies condition A.3. In
case of l-saturated sets that are not downward saturated, every β-formula
not satisfying condition B.3. will be called unused.

Definition 4.3 (Hintikka Set) Γ is Hintikka set for CPL if it is down-
ward saturated and consistent: if a formula belongs to Γ, then its comple-
ment does not belong to Γ.

Lemma 4.1 (Satisfiability of Hintikka sets) If Γ is Hintikka set for CPL,
then there is a valuation V such that:

a) if ψ ∈ Γ, then V (ψ) = 1
b) if ¬ψ ∈ Γ, then V (ψ) = 0

Proof can be found in many places, e.g. in Smullyan [261].

The constructive completeness proof requires some algorithm of proof
search which, in case of an open derivation, provides U(D) being a Hintikka
set. There are a lot of ready procedures defined for tableau calculi that may
be of some interest but the change in the format, from tableau to derivation,
forces us to pay attention to some details. In fact, some types of strategies
popular in tableaux are not at all applicable in ND setting due to the specific
features of derivations.

Tableaux may be built in a breadth-first manner or in a depth-first man-
ner, but in ND the former strategy fails. In fact, breadth-first strategy is
quite natural and easy for tableaux; if we apply a rule to some formula
above branchings we usually put the result of rule-application in all open
branches at the same time. One can find many examples of tableau proof
search procedures working in this way, for example, for CPL in Fitting [95],
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and for modal logics in Fitting [93], Goré [117]. In ND, tableau branchings
correspond to a pair: subderivation and its outer derivation, and they are
worked out one after another, so we are not able to use some formula im-
mediately in all possible places. Typically, the result of a rule-application is
put in some subderivation which is then boxed, so we must be able to repeat
the rule to the same formula again in the subderivation to come. It is like in
a tableau with branches – we would not put the result of a rule-application
to some formula above branchings in all open branches going through this
formula, but follow only one of them till the very end, and if it is closed we
would return to the nearest fork. So in ND only depth-first strategies really
work.

Is it a loss for ND? It depends. In case of an open tableau the depth-first
construction may lead to quick answer – if we find an open branch before
saturation of remaining thousand branches. But such a strategy has some
drawbacks, as well. For example, the descriptions of algorithms often apply
several forms of marking formulae as used (cf. Goré [117]), which makes
the control over the performance of the procedure easier. Marking formulae
as used is simple in case of algorithms working in a breadth-first manner,
but in case of a depth-first manner strategies it is rather complicated. We
must remember that a formula marked as used is not necessarily “used”
in all branches going through the node decorated with this formula. Every
time some branch is being closed and we must return to the nearest fork, all
formulae used below – but in this closed branch – must be again ready for
use in the next branch. In ND such a situation appears when the conclusion
of the application of some rule is in the subderivation which is boxed. All
premises of this rule must be again ready for use, so if they were marked as
used, this sign must be deleted.

In case of derivations we have additional difficulty. Since the standard
tableau rules have one premise we can base a procedure on simple instruction
of the type “case of”. At every stage just take the first (e.g. the highest
and leftmost) unused formula and apply suitable rule marking the formula
as used and go to the next one. Clearly, such strategy is not very efficient,
but it is very simple to implement, even if we add some priority strategies
that may shorten proof-search (e.g. first α-rules, then β-rules).

But this strategy is already not well suited for KE; because we have rules
with two premises and with no premises at all, the time and conditions for
their use must be specified in some other way referring rather to the whole
(branch of a) tableau. The same applies for ND. In case of two-premise
rules we must search the whole U(D) for matching suitable pairs. Similarly
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for deciding when to start a subderivation and which pair of formulae take
as Show-formula and the corresponding indirect assumption. Because of
that, every proof-search procedure for ND must be more involved than the
simplest solutions applied for tableaux. Consequently, it is more difficult
to prove its fairness and termination, and in case of automation, it is more
difficult to implement and more time- and memory-consuming.

On the other hand, in a procedure based on checking the whole U(D),
each time we start a new stage, we can easily involve some priority strategies
that may shorten the proof-search. For example, it is possible to make
consistency-check before a subderivation is started, whereas in standard
tableau procedures it is performed at the end of an algorithm because it is
expensive (cf. Fitting’s remarks in [95]). We will say more about it in the
remarks concerning the optimization.

4.2.2 Proof Search Procedure for AND1

We have already mentioned that an open derivation for ϕ, as defined in
Section 2.5.3, is not necessarily a disproof, in general in ND-system it is
not. The same applies to the restricted AND1 but in this variant we can
construct a derivation for ϕ in such a way that an open derivation provides
a disproof of this formula. D’Agostino sketches an algorithm of the sort. He
calls “E-analyzed” any KE-tableau, where we applied rules to all α-formulae
and to these β-formulae for which we had minor premises. It is evident that
in contrast to ordinary tableau such E-analyzed tableau, although linear,
need not be completed in the sense that all formulae were decomposed.
We can have many β-formulae that were not used because we do not have
any minor premises. In such a case we should apply (PB) for some missing
premise (and its negation) and proceed further in accordance with our rules.
Such a procedure must eventually produce either a proof (closed tree) or
an open but completed tableau. The inspection of any open branch makes
highlights the fact that the set of its formulae is downward saturated, hence
we got both, completeness and decidability. Moreover, the requirements
concerning admissible applications of (PB) are even sharpened in the sense
that not all analytic applications are needed.

In our ND-system we can follow D’Agostino procedure quite closely. Of
course, instead of a cut we start with an S-formula for a missing premise
(or its negation, it does not matter which we choose – the subderivation
corresponds to one branch and in case it closes, the continued outer deriva-
tion corresponds to the second). Below, we shortly present an algorithm



110 CHAPTER 4. EXTENDED NATURAL DEDUCTION

which is a deterministic version of KE-canonic procedure from D’Agostino
[2]. The principal idea is that the introduction of new subderivations (the
counterpart of branching) should be postponed as much as possible, so we
have some priority strategy: first l-saturation, then downward saturation.
Let us note that it is not sufficient for putting the process of subderivation
generation to the very end. Consistency test is also prerequisite before a
new subderivation begins, which is possible but has some drawbacks (cf. a
discussion on optimization). So in procedures to follow we put consistency
test at the end of an algorithm, after the full downward saturation of U(D).

The application of the basic construction in later chapters (for proving
completeness of analytic ND systems for modal logics), requires the division
of the procedure into two modules. We define separately an algorithm for
saturation and for proof-search; in the latter we repeatedly call the former
procedure and consistency test of the whole derivation.

SAT(U(D)) PROCEDURE

Input: the set U(D) of any derivation.

Output: downward saturated U(D).

1. Until U(D) is not l-saturated do
apply the rules of elimination to any U-formula.

2. If U(D) is not downward saturated, then
choose the first unused β-formula,
start a new subderivation (add “SHOW:βi ⊕−βi”),
and goto step 1.
else stop.

ALGORITHM 1 (proof search of ϕ in CPL):

0. Start: Write down “SHOW:ϕ⊕−ϕ” as the beginning of a derivation.
1. Call procedure SAT(U(D)).
2. If U(D) is inconsistent, then

apply (⊥ I) and close the current subderivation by [RED]:
2.1. If the degree of closed derivation = 1, then

stop: � ϕ
else
goto step 1.

else
stop: ϕ has no proof.
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We establish termination and fairness of these procedures. To that aim
we must show that every compound formula is used as many times as it is
necessary in a derivation, and that both, the length of every subderivation
and their number, is finite. First we show:

Lemma 4.2 SAT(U(D)) is terminating.

Proof Let D be any derivation of the depth k. The procedure first per-
forms l-saturation by the application of elimination rules to every α-formula
and every β-formula for which minor premise is present. Every compound
formula which was used this way and every literal is marked with U as used.
By the application of a rule we mean that we write down a conclusion if it
is not yet present in U(D), thus we can mark as used also such β for which
we do not have minor premise but at least one of the possible conclusions is
already present. Note also that we are looking for minor premises for β-rules
among all members of U(D) at the current stage; all nonboxed formulae,
unmarked and marked are at our disposal. Every unused β is signed by W
as waiting. Because U(D) is finite and every rule satisfies subformula prop-
erty so after finishing Step 1. we obtain a derivation D′ ⊇ D of the depth
k, where U(D′) = U∪W. If the set W is empty, then U(D′) is downward
saturated, and the procedure stops. Otherwise, we have a finite set of n
unused β-formulae. Step 2 introduces a new subderivation which provides
a lacking minor premise for one of the element of W, and we return to Step
1. In this way W decreases since at least one β from it is used (“at least”
since the extension of D′ made in Step 2 may, through repetition of Step 1,
yield minor premises or conclusions for other β-formulae from W, as well).
As a result, after the repeated sequence of application of Steps 1 and 2 we
must obtain D′ ⊇ D such that U(D′)=U, and the depth of D′ is k+ i, where
i ≤ n.

Before showing the termination and fairness of Algorithm 1, we must
remark that any derivation is a kind of structure that can be redefined as
a tree. The most immediate way would be to use again the scheme from
Section 4.1.2, the one used to show that any KE-tree may be turned into a
derivation. Now we use different and more interesting mapping which is not
so obvious but is more direct with respect to the derivation construction.
In this approach let us take the whole subderivation connected with some
Show-line as the node of the tree. We will refer to so defined tree as T (D).

Definition 4.4 (Tree T (D)) The root of T (D) is the only derivation of
degree 1 and every subderivation is a node of this tree. For any subderivation
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of degree k take as the children of this node all subderivations of degree k+1
that are nested in it.

The definition of a derivation and the definition of related tree imply
some simple facts that we record below:

• any branch of such a tree is a sequence of the length i+ j > 0, where:

– the first i nodes are sets of U-formulae belonging to first i open
subderivations (open nodes);

– the remaining j nodes are nested boxes containing closed sub-
derivations (closed nodes).

• For any branch either i or j may be 0, but every branch must have
the length at least 1.

• Closed nodes never come before open nodes on any branch.

• All branches of the tree corresponding to a proof have only closed
nodes (i = 0).

• Exactly one branch of the tree corresponding to an open derivation
consists of only open nodes (j = 0).

Lemma 4.3 Every branch in T (D) must terminate.

Proof First consider any branch that does not contain boxed nodes (each
subsequent derivation is open). In this case we have termination as a con-
sequence of the preceding lemma since we have shown that realization of
SAT(U(D)) gives only finite branches. Every new subderivation (=node)
is introduced by appealing to some waiting β. Since due to subformula
property the number of all different β-s that may appear in D is finite we
must only show that no repetition is possible in the sequence of nested and
open subderivations. But β once used to create a subderivation is marked
as used and this mark could have been deleted only when this subderivation
is boxed, which is impossible by definition of our branch. So no β can be
the source of more than one subderivation in this branch.

The second Step of the algorithm makes some subderivation (node)
boxed. Obviously, any branch that contains some boxed nodes must be
finite, since if one (the current) degree is boxed the branch terminates; we
can only put in boxes the preceding nodes but we cannot add more. Clearly,
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further performance of the procedure may stop boxing at some degree k and
we may be forced to start a new subderivation of degree k + 1 but this is
the latest node of the new branch not the continuation of the old one.

In general, every β may generate new subderivations many times but
only on different branches having the same parent. We must show that it
may be done only finitely many times (i.e. T (D) is finitely branching).

Lemma 4.4 Every node in T (D) has only a finite number of children.

Proof Take any subderivation of degree k ≥ 1 and assume that we are
precisely at this stage of procedure realization (call it stage n), where for
the first time the point 2 of SAT(U(D)) is executed (so we are in a node
with no children, so far). In order to obtain any nested subderivation of
degree k+1 all compound formulae in U(D) must be marked as used except
at least one β. Obviously, if we start a subderivation of degree k+ 1, and it
remains open for the rest of the construction, it will be the only child of our
node and we are done. So assume that at some later stage this node will
be boxed. Then it is possible that after l-saturation of U(D) we can start
another subderivation of degree k + 1. We show that it may be done only
finite number of times, by induction on the union of lengthes of all β-s in
U(D) unused (marked as W) at the stage n. By assumption there must be
at least one such β.

Basis: considered β has length 1. So both S-formula and assumption
of the next subderivation are literals. Even if this subderivation is boxed
at later stage, there is no new β-s in the outer derivation of degree k that
can start another subderivation, since the only new formula in U(D) of this
derivation is a literal (previous S-formula).

We show that our result holds if the sum of lengthes of unused β-s is
n, provided it holds for any k < n. Again consider the situation that we
started the first subderivation and it is boxed. This time the number of
β-s marked with W may even increase (e.g. canceled S-formula could have
been α built from two β-s), but since our starting β is now used (marked as
U) the union of the lengthes of remaining ones must be at most n− 1 and
induction hypothesis applies.8 .

8The same result may be demonstrated by showing that any β may be used to creation
of new subderivations at most 2n+1 times, where n is the number of β-formulae preceding
this β in the derivation.
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By König lemma, and lemmata 4.3 and 4.4, T (D) must have finite num-
ber of nodes. Since each node is a finite set of formulae we have proven a
termination of the algorithm. So it follows:

Lemma 4.5 Every derivation performed by algorithm 1 is finite.

We let the reader establish the next

Lemma 4.6 If D is completed, then U(D) is a downward saturated set.

Both lemmata (4.5 and 4.1) give us completeness (as well as decidability)
of AND1-CPL.

Theorem 4.1 (Adequacy) ADN1 is an adequate formalization of CPL

Proof Soundness was proven earlier for full KM, so only completeness
remains. Assume that � ϕ, so, in particular, a derivation carried via al-
gorithm 1 is finite and open. U(D) of this derivation is Hintikka set, so –
according to lemma 4.1 – it is satisfiable. ¬ϕ ∈U(D), so � ϕ.

4.2.3 Optimization

Let us focus on some questions that may be important for making proof
search process in AND1 more efficient.

Algorithm 1 is certainly not very efficient. Consistency test is applied
only after downward saturation of U(D). There are some advantages of such
a solution; [95] pointed out that consistency test is expensive (necessity of
searching of all U(D)), so it is better to apply it at the end. Moreover, in
this case we may limit the search of U(D) only to literals (atomic consis-
tency test). But this is an advantage in case of tableau systems, where rules
simply break down single compound formulae into pieces. In case of ND
it is of no use because β-rules lead necessarily to checking the whole U(D)
much earlier, when we are looking for minor premises or direct subformu-
lae of respective β-s. On the other hand, a separation of the saturation
process from consistency test leads potentially to numerous repetitions of
the same sequence of inferences. For example, even the first performance of
SAT-procedure may build a derivation of the big depth, where a pair of com-
plementary formulae occurs e.g. already in the subderivation of degree 1. In
such a case, algorithm 1 will be repeatedly calling subprocedure SAT(U(D))
and making consistency test again and again, before the proper level of a
derivation will be boxed. How to avoid such cumbersome situation?
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One of the possible optimization would be to replace the requirement of
closing the current subderivation by more radical requirement of closing all
subderivations up to this degree, where inconsistency actually occurs. For
instance: let the current subderivation have degree 20; the application of
Step 2. finds ϕ in outer subderivation of degree 3, and −ϕ in subderivation
of degree 5. In such a situation we should close not only the subderiva-
tion of degree 20 but all outer subderivations up to the (and including)
subderivation of degree 5, and after that repeat step 1.

More radical solution would be to apply a different algorithm with differ-
ent order of steps: (a) l-saturation −→ (b) consistency test −→ (c) opening
a new subderivation. In such a procedure, a deepening of the derivation is
made only after linear extension and checking consistency, and the depth is
always increased by one degree only (then again linear extension and con-
sistency test). The strategy executed by such an algorithm may lead to the
end much faster, particularly in case of theses, but it has two disadvantages:

1. Proving termination and fairness of such an algorithm is more com-
plicated than for algorithm 1.9

2. Algorithm of this kind does not work for many modal logics (we cannot
prove completeness) – it will be demonstrated in Chapter 10.

Hence, we keep Algorithm 1 as the basis of our future generalizations.

4.3 System AND2

In AND1 we severely limited our deductive resources but we got analytic
decision procedure of the same level of complexity as KE. This is indeed in
contrast with the usual practice and, of course, such system may be seen
as not a genuine ND-system by many purists. In any case, we can keep
the whole ND-system from Chapter 2 and think about the restricted one as
the basis for an algorithm devised on a full system. Such a solution admits
producing shorter and smarter proofs if possible, moreover, in contrast to
ordinary ND, we can construct not only proofs but also disproofs.

We can ask if it is possible to obtain less restrictive but still analytic and
universal ND system. Because AND1 follows closely KE it is instructive to
analyze some properties of this system.

9Such a solution was applied by the author in [147].
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In KE one can find that the proper choice of a cut-formula may have
significant impact on the complexity of a proof. Bad choice often leads to
many further branchings and repetitions of sequences of inferences in many
branches, whereas a “good” choice may considerably shorten the proof.
Obviously, the same applies to AND1, where by cut-formula we mean a
formula and its complement used to initiate a subderivation. Let us compare
two proofs of the same thesis.

1 SHØW: (p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t) [31, RED]
2 ¬((p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t)) ass.
3 p→ q ∧ r (2, αE)
4 ¬((p→ q ∨ s) ∧ (p→ r ∨ t)) (2, αE)
5 SHØW: p [15, RED]
6 ¬p ass.
7 SHØW: p→ q ∨ s [11, RED]
8 ¬(p→ q ∨ s) ass.
9 p (8, αE)
10 ¬(q ∨ s) (8, αE)
11 ⊥ (6, 9,⊥I)
12 ¬(p→ r ∨ t) (4, 7, βE)
13 p (12, αE)
14 ¬(r ∨ t) (12, αE)
15 ⊥ (6, 13,⊥I)
16 q ∧ r (3, 5, βE)
17 q (16, αE)
18 r (16, αE)
19 SHØW: p→ q ∨ s [25, RED]
20 ¬(p→ q ∨ s) ass.
21 p (20, αE)
22 ¬(q ∨ s) (20, αE)
23 ¬q (22, αE)
24 ¬s (22, αE)
25 ⊥ (17, 23,⊥I)
26 ¬(p→ r ∨ t) (4, 19, βE)
27 p (26, αE)
28 ¬(r ∨ t) (26, αE)
29 ¬r (28, αE)
30 ¬t (28, αE)
31 ⊥ (18, 29,⊥I)
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1 SHØW: (p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t) [23, RED]
2 ¬((p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t)) ass.
3 p→ q ∧ r (2, αE)
4 ¬((p→ q ∨ s) ∧ (p→ r ∨ t)) (2, αE)
5 SHØW: p→ q ∨ s [14, RED]
6 ¬(p→ q ∨ s) ass.
7 p (6, αE)
8 ¬(q ∨ s) (6, αE)
9 q ∧ r (3, 7, βE)
10 q (9, αE)
11 r (9, αE)
12 ¬q (8, αE)
13 ¬s (8, αE)
14 ⊥ (10, 12,⊥I)
15 ¬(p→ r ∨ t) (4, 5, βE)
16 p (15, αE)
17 ¬(r ∨ t) (15, αE)
18 q ∧ r (3, 16, βE)
19 q (18, αE)
20 r (18, αE)
21 ¬r (17, αE)
22 ¬t (17, αE)
23 ⊥ (20, 21,⊥I)

In the latter proof we did not use the first β-formula in a proof to start
a subderivation but we have chosen the second one because its direct com-
ponents are longer, so the additional assumption gives us more information.
Unfortunately, there is no recipe for the optimal choice of a cut-formula;
the strategy of taking the longest formula often leads to good results but it
is certainly not universal. If the chosen formula does not enable many new
inferences, in particular, if it does not give us minor premises for application
of β-rules to unused formulae, we should rather follow different strategies.10

The analysis of many semantical methods of checking validity, like short
(indirect) truth-table test, or the method of Quine’a [226], shows that in
case of necessity of applying additional assumptions very good results are
often obtained if we consider a variable having relatively many occurrences

10As we will see in Chapter 10 the application of cut in modal logics may lead to other
problems, as well.
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in analyzed formula (or a set of formulae)11 Formally, it is a counterpart
of a cut applied on literal. In fact, in the first proof we have used this
strategy choosing p as a Show-formula and ¬p as an indirect assumption,
since this variable has the greatest number of occurrences in the proven
thesis. But we did not obtain satisfying results since elimination rules do
not allow for immediate application of indirect assumption. This time the
lack of introduction rules in AND1 is the source of a problem. The next
example shows that the application of introduction rule leads to a proof
even shorter than the second one in AND1.

1 SHØW: (p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t) [20, RED]
2 ¬((p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t)) ass.
3 p→ q ∧ r (2, αE)
4 ¬((p→ q ∨ s) ∧ (p→ r ∨ t)) (2, αE)
5 SHØW: p [11, RED]
6 ¬p ass.
7 p→ q ∨ s (6, βI)
8 ¬(p→ r ∨ t) (4, 7, βE)
9 p (8, αE)
10 ¬(r ∨ t) (8, αE)
11 ⊥ (6, 9,⊥I)
12 q ∧ r (3, 5, βE)
13 q (12, αE)
14 r (12, αE)
15 q ∨ s (13, βI)
16 p→ q ∨ s (15, βI)
17 ¬(p→ r ∨ t) (4, 16, βE)
18 r ∨ t (14, βI)
19 p→ r ∨ t (18, βI)
20 ⊥ (17, 19,⊥I)

Combining the strategy of the longest formula with the full assortment
of ND rules can even shorten the proof as the next two examples show:

11This is somewhat related to the strategies from resolution provers, like ordering or
selection function, which are applied to reduce the number of useless inferences. But it
is not possible to transfer these strategies directly to ordinary ND since it does not work
on clauses – one more good reason to introduce RND in the next section.
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1 SHØW: (p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t) [19, RED]
2 ¬((p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t)) ass.
3 p→ q ∧ r (2, αE)
4 ¬((p→ q ∨ s) ∧ (p→ r ∨ t)) (2, αE)
5 DØW: p→ q ∨ s [10, COND]
6 p ass.
7 q ∧ r (3, 6, βE)
8 q (7, αE)
9 r (7, αE)
10 q ∨ s (8, βI)
11 ¬(p→ r ∨ t) (4, 5, βE)
12 p (11, αE)
13 ¬(r ∨ t) (11, αE)
14 q ∧ r (3, 12, βE)
15 q (14, αE)
16 r (14, αE)
17 ¬r (13, αE)
18 ¬t (13, αE)
19 ⊥ (16, 17,⊥I)

1 SHØW: (p→ q ∧ r) → (p→ q ∨ s) ∧ (p→ r ∨ t) [15, COND]
2 p→ q ∧ r ass.
3 DØW: p→ q ∨ s [8, COND]
4 p ass.
5 q ∧ r (2, 4, βE)
6 q (5, αE)
7 r (5, αE)
8 q ∨ s (6, βI)
9 DØW: p→ r ∨ t [14, COND]
10 p ass.
11 q ∧ r (2, 10, βE)
12 q (11, αE)
13 r (11, αE)
14 r ∨ t (13, βI)
15 (p→ q ∨ s) ∧ (p→ r ∨ t) (3, 9, αI)

The last proof is the shortest but not the simplest in the important
sense its structure being more complex due to the greater number of nested
subderivations.
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In fact, the application of introduction rules often renders avoiding sub-
derivations possible, whereas in AND1 it is impossible. The next two ex-
amples illustrate the point.

1 SHØW: ((p→ q) → (r → s)) → (r → (q → s)) [16, RED]
2 ¬(((p→ q) → (r → s)) → (r → (q → s))) ass.
3 (p→ q) → (r → s) (2, αE)
4 ¬(r → (q → s)) (2, αE)
5 r (4, αE)
6 ¬(q → s) (4, αE)
7 q (6, αE)
8 ¬s (6, αE)
9 SHØW: p→ q [13, RED]
10 ¬(p→ q) ass.
11 p (10, αE)
12 ¬q (10, αE)
13 ⊥ (7, 12,⊥I)
14 r → s (3, 9, βE)
15 s (5, 14, βE)
16 ⊥ (8, 15,⊥I)

1 SHØW: ((p→ q) → (r → s)) → (r → (q → s)) [12, RED]
2 ¬(((p→ q) → (r → s)) → (r → (q → s))) ass.
3 (p→ q) → (r → s) (2, αE)
4 ¬(r → (q → s)) (2, αE)
5 r (4, αE)
6 ¬(q → s) (4, αE)
7 q (6, αE)
8 ¬s (6, αE)
9 p→ q (7, βI)
10 r → s (3, 9, βE)
11 s (5, 10, βE)
12 ⊥ (8, 11,⊥I)

The first proof is performed in AND1, the second is not since we applied
(βI) in line 9. It is evident that due to the application of introduction rules
we may not only shorten proofs but also reduce their depth. The examples
considered were simple and the difference between them not drastic; but
it is possible to find examples that in AND1 lead to the significant growth
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of the complexity of proof with respect to proofs obtainable in full ND.
On the other hand, it seems that if we admit all the rules again we will
loose analyticity and universality. However, if we analyze the examples of
proofs where introduction rules were applied we should note that they are
still analytic. All applications of [COND], as well as, all applications of
introduction rules in these proofs are analytic.

The problem is how to proceed with proof construction to save analyt-
icity while using introduction rules and [COND]. We will try to show that
the problem of saving analyticity for full ND is not as hard as it seems. It
is instructive to compare proof search in ND with indirect truth-table test
in CPL. In common opinion, tableaux are better than the full truth-table
method, and they are rather compared to indirect truth-table test. We have
already mentioned (Section 3.3.) D’Agostino’s result showing that from the
standpoint of relative proof length complexity standard TS is worse than KE
since the latter may p-simulate tableau while the opposite does not hold.
In fact, D’Agostino has shown that TS, in this respect, is even worse; it
cannot p-simulate full truth-table test.12 If tableau method, at least in case
of classical logic, is indeed the formalized counterpart of informal indirect
truth-table test, as D’Agostino seems to suggest, it would show that this
method is also equally inefficient in the worst cases. But it is a mistaken
view.

Closer analysis shows that indirect truth-table test tends to work faster
than tableaux, and even faster than KE. The source of this phenomenon lies
in the fact that in an indirect truth-table test we are also using semantic
counterpart of cut in analytic form; we have mentioned this above during the
discussion on the strategy of choosing as cut-formulae literals with the great
number of occurrences. In this way we may work faster than in standard
TS but not faster than in KE. Note, however, that while checking formulae
indirectly we not only proceed from the value of a formula (and perhaps
some of its subformulae) to values of its parts, but very often in the reverse
direction; e.g. having established some βi as true we simply treat the whole
β as true. For example, when testing the thesis from the last two examples
it seems obvious that after the first stage of establishing values of variables
which leads to claiming that both r and q are true and s is false, we will
use this information to establish the value of implication in the antecedent.

12But remember that these results should not be treated as indicating the weakness
of tableaux for automated deduction in general, since the possibility of obtaining shorter
proofs does not mean that the space of proof search is also smaller; sometimes it is just
the opposite. We have mentioned about that already in Chapter 3.
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By means of such shortcuts, we do not need to consider different variants
of falsifying valuations, whereas in KE we have to apply (PB).

But such informal steps that considerably accelerate checking, in an ob-
vious way correspond to ND-rules that we gave up in the preceding section
when looking for decision procedure. This is because analyticity is com-
monly (and mistakenly) considered as equivalent to having only decomposi-
tion rules such as our elimination rules. Mainly for this reason the authors of
several methods tend to be confined to this type of rules only. In Chapter 3
we have called such rules strictly analytic, because subformula property is
involved in their schemata. On the other hand, building-up rules like our
introduction rules do not have subformula property per se, but we can make
them analytic in the more general sense, putting restrictions on their use,
exactly as with cut (cf. a discussion in Section 3.3). So, once again, we can
come back to our first ND system with all inference and proof-construction
rules but with the following general analytic restrictions on the clauses 1.,
4., 6., and 8. in the definition of a derivation:

1’. “D⊕SHOW:ψ” is a derivation of ϕ for any ψ ∈ {¬ϕ}

4’. “D ⊕ ¬¬ψ” is a derivation of ϕ, provided ψ ∈U(D) and ¬¬ψ ∈ {¬ϕ}

6’. “D ⊕ α” is a derivation of ϕ, provided {α1, α2} ⊆U(D) and α ∈ {¬ϕ}

8’. “D ⊕ β” is a derivation of ϕ, provided βi ∈U(D) and β ∈ {¬ϕ}

We will call this version AND2. The system is adequate for CPL;
soundness holds because it is a restricted version of sound ND system, com-
pleteness holds because it is an extension of AND1 which is complete. It
may be extended to first-order system in the way presented in Section 4.2
or by addition of analytic restriction on any of the set of rules introduced in
Section 2.7. In fact, we must restrict only the applications of (∃I) requiring
that the introduced ∃xϕ must belong to {¬ϕ}; several forms of [UNIV ]
are made analytic already by condition 1’. above concerning all S-lines that
may be introduced into a derivation.

In the end we make some sketchy remarks concerning proof search in
AND2. We have merely shown that shorter proofs may be obtained in
AND2 than in KE. But it does not mean that such short proofs may be
found in shorter time. The problem is similar as with KE compared to or-
dinary TS with respect to efficiency. A creation of shorter KE proofs may
need longer proof search since the application of β-rules or (PB) requires
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checking the whole branch (cf. a discussion on proof search strategies in
Section 4.2.1). Serious investigation on deductive capabilities of AND2
would require a definition of proof search algorithm that applies all the
rules in an analytic way and its implementation to test how it works on hard
problems. But even without that we may point out to some advantages and
disadvantages.

Certainly, the admission of additional rules leads to a greater flexibility
of proof construction. We may obtain shorter proofs and it is possible to
apply richer set of strategies in their search. But this obviously implies
costs – any proof search procedure for AND2 must be much more compli-
cated due to the number and variety of rules. A tree of possible choices in
proof search must have greater branching factor than such a tree in AND1.
Also an amount of memory in case of automatization, must be much greater
than for AND1.

Having all these complications in mind, we are not going to exploit
the problem of proof search procedure for AND2 in such detail as we did
for AND1. For our needs (in exploring analytic ND for modal logics in
Chapter 10) the results obtained for AND1 are sufficient. But it is worth
mentioning that there are some interesting approaches to this theme that
may be simulated in AND2. All of them are connected with the existing
provers or other computer programs for building ND proofs.

The main problem is how to avoid indeterminacy implied by the un-
controlled use of introduction rules. Many programs are based on some
proof search procedures that use troublesome rules in an analytic way, so
they may be adjusted to work in AND2. There is no space here for their
thorough analysis and comparison. Terminology and notation concerning
proof-search strategies is not fixed but varies from author to author, which
makes such an attempt very difficult after all. So we limit our considerations
to some sketchy remarks concerning the main ideas.

Many authors underline that introduction rules must be applied only
in special circumstances. Generally, proof search must be goal-oriented, or
interest-driven (cf. e.g. Pollock [216]), hence the call for e.g. (∨I) must be
justified by its need as a major premise for application of some two-premise
rule. Note that this complies strictly with our informal remarks given above.
In some proposed procedures (e.g. in [46]) their application is treated as a
last resort.

Finally, we should say that the analysis of different algorithms involved
in ND-based provers exhibits one more reason for treating KM as the most
suitable deductive tool. In many approaches, to control better the interest-
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driven application of troublesome rules, the set of processed data is divided
into two lists: 1. premises and active assumptions with already-deduced
(and active) conclusions (antelines in [204], conclusions in [217], proof-list
in [46]), and 2. formulae we need to proceed further (goalstack in [204],
interests in [217], goal-list in [46]). Notice that this division is already
present in KM due to the division of formulae in a derivation into U- and
S-lines. So using KM format for AND2 allows for a direct realization of
strategies of proof search involved in several provers. This alternate process
of introducing new U-lines and S-lines in KM corresponds well also to the
combination of forward and backward reasoning present in many descrip-
tions of automated proof search in ND (cf. Dyckhoff [81] or Pollock [216]).
Roughly speaking (and simplifying a bit), by means of inference rules we
realize forward reasoning, whereas by introducing new S-lines we proceed
with backward reasoning.

4.4 Resolution and ND Combined

The results obtained thus so far show that ND systems, after some modifi-
cations, may be also treated as universal and general systems, i.e. good for
performing different deductive tasks, and able to simulate strategies taken
from other systems. In particular, one may also use them for automated de-
duction. It is important for both AND1 and AND2 not to lose natural and
intuitive character of their deductive tools, and to extend the pedagogical
value of ND by increasing its universality. Still, neither AND1 nor AND2
is as general form of ND, as it is possible.

We have compared AND2 and AND1 with respect to the length of
derivations. The related question is the complexity of derivations mea-
sured by their depth. In ND the number of nested subderivations is the
counterpart of the number of branches in TS or KE. In all these systems
additional subderivations/branches may significantly increase the length of
a derivation because some sequences of inferences may be repeated in sev-
eral places. Let us recall that in KE we may obtain significant improvement
over standard TS in this respect and AND1 behaves like KE. AND2, due
to inclusion of introduction rules, obtains often shorter derivations also be-
cause we are not forced to introduce as many additional assumptions as in
AND1. So shorter AND2-derivations are not only the result of performing
more direct inferences but also of the reduction of repeated steps in different
subderivations. But it is not possible to avoid additional subderivations in
general, similarly as it is not possible to eliminate branching in TS or KE;
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a variant of AND restricted in this way would be incomplete. It is impor-
tant to consider if it is possible to obtain ND-like system wherein we may
construct linear derivations in the strict sense, i.e. of the depth=1.

Notice that so far we have considered ND in comparison with systems
like TS and KE, or indirect truth-value tests. We have not taken up the
problem of how to make use, in ND, of resolution or DP. We have already
underlined that these systems are the most powerful techniques developed
for automated theorem proving. The source of the success of resolution lies
mainly in its formal simplicity leading to straightforward implementations.
Current versions of resolution are, in fact, not so simple but this is a price
for increasing efficiency. We have also noted that the simplicity of resolution
is of the kind that makes it artificial for humans. Natural deduction is the
other extreme – a natural and flexible tool of deduction for humans but the
rich machinery of rules and more complicated structure of proofs makes the
implementation harder.

Is it possible to mix both approaches in order to get a system that enjoys
advantages of either? We have shown that the richness of ND apparatus
makes possible simulation of systems like tableau, even on the ground of
quite standard basis. In order to simulate resolution and DP we only need
one simple generalization; the admission of generalized clauses, instead of
single formulae, as basic items in derivations. The resulting system, called
RND (resolution based ND), is one of the possible solutions to the posed
question. Moreover, it is also a positive answer to our problem of providing
a system with really “flat” derivations.

4.4.1 Clauses Introduced

Clearly, we are more interested in such a form of resolution which does not
require preprocessing step of transformation into normal form, but works
directly on every formula. For our aim the most convenient treatment of
resolution is that of Fitting [95]; moreover he applied it also to modal logics
[94].

At first, we consider some minimal modification of KM system for CPL.
Instead of single formulae we admit generalized clauses (i.e. finite sets of
formulae) as U-lines in a derivation. So Γ, Δ denote arbitrary clauses, in-
cluding empty one interpreted as ⊥, whereas X,Y denote possibly empty
sets of clauses. Recall the convention introduced in Chapter 1 to avoid am-
biguity: in the description of the rules we use “,” for separation of formulae
in clauses, and “;” for separation of clauses. Thus we write Γ,Δ for con-
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catenation of two clauses in one line, and Γ; Δ for two clauses from different
lines of a derivation.

Clauses may appear in U-lines only, so proof construction rules are kept
intact. The inference rules obtain the following, generalized form:

(Res) Γ, ϕ ; Δ,−ϕ / Γ,Δ
(CNN) Γ,¬¬ϕ // Γ, ϕ
(CαE) Γ, α / Γ, αi, where i ∈ {1, 2}
(CαI) Γ, α1 ; Δ, α2 / Γ,Δ, α
(CβE) Γ, β ; Δ,−βi / Γ,Δ, βj , where i �= j ∈ {1, 2}
(CβI) Γ, βi / Γ, β, where i ∈ {1,2}

It is obvious that this generalization is trivial if we do not add some rule
which may introduce into derivations the sets containing more than one
formula. After all, proof construction rules still operate on single formulae
(or rather unit clauses) as S-lines and assumptions. The additional rule
reveals clausal character of sets:

(C) Γ, β / Γ, β1, β2

It is straightforward that in the context of clausal ND, (Res) is just a
generalization of (⊥I). One may also keep (⊥I) as a primitive rule and in-
troduce (Res) as admissible rule by simple inductive proof on the cardinality
of Γ ∪ Δ. Two other derivable rules which simplify derivations are:

(CβI ′) Γ, β1, β2 / Γ, β
(W ) Γ / Γ, ϕ

The justification of the former is a consequence of the fact that we are
using sets of formulae, so contraction is implicit. (CβI) applied twice to
β1 and to β2 yields Γ, β, β = Γ, β. In what follows we will not distinguish
the applications of both forms of β introduction. Note that to prove (W )
(weakening), you may always take any element of Γ as β1 and apply (CβI)
with ϕ as β2, then by (C) obtain Γ, ϕ. In case of empty Γ recall that Γ=⊥,
so we may deduce any formula from it.

What do we achieve by this simple enrichment of ND? Here is an exam-
ple – a proof of one of the distribution laws:
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1 SHØW: p ∨ (q ∧ r) → (p ∨ q) ∧ (p ∨ r) [8, COND]
2 p ∨ (q ∧ r) ass.
3 p, q ∧ r (2, C)
4 p, q (3, CαE)
5 p, r (3, CαE)
6 p ∨ q (4, CβI ′)
7 p ∨ r (5, CβI ′)
8 (p ∨ q) ∧ (p ∨ r) (6, 7, CαI)

One should compare this proof with ordinary ND-proof of the same
thesis to see the difference in the length and complexity, measured by the
number of subderivations. Moreover, we can just reverse this proof, change
the numeration of lines, and we immediately obtain a proof of the converse
implication. It is possible because (C) is the inverse rule of (CβI ′) and
(CαI) is the inverse of (CαE) (applied to both constituents), and no rule
which is not invertible (like (Res), (CβE) or (W )) was used in this proof.

It seems that the restriction of S-lines and assumptions to single formu-
lae is artificial and unjustified in such a system. In fact, one may devise
generalized forms of proof construction rules, as well:

[CCOND] If X;¬(∨Γ) � Δ, then X � Γ,Δ
[CRED] If X;¬(∨Γ) � ⊥, then X � Γ

In both cases X is a set of all usable clauses in a derivation.
Neither rule has to be primitive since we can demonstrate their admis-

sibility in the clausal ND system with standard [COND] and [RED]. We
do not do that because much simpler solution is at hand.

Remark 4.1 ND T-systems of a similar character may be found in
Borićić [53] and Cellucci [65]. They are defined for the proof of normalization
theorem so some diferences appear, e.g. the rules operate on sequences, not
on sets, so explicit rules of contraction and permutation are necessary. Still,
the inference rules are very similar to the stated above; the main difference
concerns proof construction rules. The counterparts of [COND] and [RED]
are:

[MCOND] If X;ϕ � Γ, ψ, then X � Γ, ϕ→ ψ
[MRED] If X;ϕ � Γ, then X � Γ,¬ϕ ♣
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4.4.2 System RND

Closer analysis shows that the system introduced in the preceding subsec-
tion is unnecessarily complicated and redundant. Suitable calculus may
be significantly simplified, in particular, by introducing just one proof con-
struction rule which covers all cases of standard ND rules of this sort. This
system, under the name RND, was presented first in [150]. In RND we need
only one proof construction rule called Subsumption:

[SUB] If X;−ϕ1; . . . ;−ϕk � Δ, then X � Γ, where:
Γ is nonempty, Δ ⊆ Γ, {ϕ1, ..., ϕk} ⊆ Γ, k ≥0.

Informally, the above rule reads: if in a subderivation, with unit clauses
−ϕi, k ≥ i ≥ 0 as additional assumptions, a clause Δ is deduced, then we
can close this subderivation and deduce Γ (a superset of Δ) on the basis of a
set of clauses X alone. Note that all assumptions (if any) are complements
of elements of Γ and that Δ empty (= ⊥) is admitted.

Schematically the application of [SUB] in KM looks like this:

X

i SHØW: Γ
i+ 1 −ϕ1
...

...
i+ k −ϕk
...

...
n Δ

The presence of many proof construction rules in ordinary ND-systems
rather ensures a lot of flexibility in constructing derivations but complicates
the system-description, metalogical proofs of system features, definitions of
proof-search procedures, and many other things. Hence, the fact that in
RND only one rule of this kind is sufficient is very important. Clearly, we
must demonstrate that [SUB] is general enough to cover all other ND proof
construction rules.

Lemma 4.7 Proof construction rules of KM are admissible in RND

Proof Recall that in the original KM we have 3 such rules: [DIR], [RED]
and [COND]. The first is just a special case of [SUB] with unit clause Γ=Δ
and k = 0 Similarly, [RED] is a special form of [SUB] with Γ being unit
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clause, k = 1 and Δ = ⊥. [COND] is an admissible rule as the following
schema shows:

X
k SHØW: β [n+ 1, SUB]
k + 1 SHØW: βi, βj [n, SUB]
k + 2 −βi ass.

...
n βj (k + 2, . . .)
n+ 1 β (k + 1, CβI ′)

βj in line n was deduced from assumption −βi and possibly some elements
of X with the help of the same deduction which justifies given application
of [COND]. So every such an application may be eliminated at the expense
of two additional lines (k + 1 and n + 1) and increasing the depth of orig-
inal proof by 1 (two subproofs closed by [SUB] instead of one closed by
[COND]).

As we can see, ND system operating on clauses may be defined in a
more concise and elegant way, where clauses and resolution are not ad hoc
additions but provide an essential basis of a new system RND. Standard
version of ND is just a particular case of RND. The system for CPL is
obtained by addition to [SUB] the following inference rules:

(W ) Γ / Γ, ϕ
(Res′) Γ, ϕ ; Γ,−ϕ / Γ
(CNN) Γ,¬¬ϕ // Γ, ϕ
(Cα) Γ, α // Γ, α1 ; Γ, α2

(Cβ) Γ, β // Γ, β1,β2

We may define formally a derivation of a clause in RND similarly as we
did for ND in Chapter 2; we leave it to the reader13 and define only a proof.

Definition 4.5 Let D be a derivation of a clause Π; if S(D) = ∅, then D
is closed (its U(D) = {Π}), otherwise D jest open (both U(D) and S(D) are
nonempty). Closed derivation of Π is a proof of Π (RDN � Π).

In RND all previously stated rules (Res), (CαI), (CβI) and (CβE) are
easily derivable with the help of (W ). Since then, we will be using them
freely in order to shorten derivations.

13One may find it also in [150].
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It is rather easy to check that RND is sound for CPL:

Theorem 4.2 Soundness: RND � −Γ, ϕ implies Γ |= ϕ

Proof Soundness of the inference rules is easy to provide if we interpret
clauses as n-ary disjunctions. It remains to show that [SUB] is normality
preserving. Assume that ∨Δ follows from X and, possibly empty, set of
assumptions: −ϕ1, ..., −ϕk, then, clearly, so does ∨Γ, since Δ ⊆ Γ. Hence, if
k = 0, we are done, otherwise X implies −ϕ1 → (−ϕ2 → ...(−ϕk → ∨Γ)...),
which is equivalent to ϕ1 ∨ (ϕ2 ∨ ...(ϕk ∨ (∨Γ)...) which is equivalent to ∨Γ
since for each i ≤ k, ϕi ∈ Γ. Therefore, ∨Γ follows from X.

The form of the soundness theorem shows how to construct derivations
justifying validity of arguments. We just start a proof of a clause which
consists of a conclusion and complements of all premises. Here is an example
of such a proof in RND:

1 SHØW: ¬(p→ (q → r)), p→ r, p ∧ ¬q [10, SUB]
2 p→ (q → r) ass.
3 ¬(p→ r) ass.
4 ¬p, q → r (2, Cβ)
5 ¬p,¬q, r (4, Cβ)
6 p (3, Cα)
7 ¬r (3, Cα)
8 ¬q, r (5, 6, Res)
9 ¬q (7, 8, Res)
10 p ∧ ¬q (6, 9, Cα)

Careful reader may try to make a proof using all three assumptions
and getting ⊥, or using two other possible pairs of assumptions (one is not
enough). The above proof demonstrates that p → (q → r),¬(p → r) �
p ∧ ¬q.

Completeness of RND may be stated on the basis of lemma 4.7. and
simple observation that all inference rules of ordinary KM are particular
cases of RND (primitive or derivable) rules with Γ = Δ = ∅. So everything
derivable in KM-CPL is derivable in RND and we can state:

Theorem 4.3 RND-system is strongly complete with respect to CPL

Although purists may doubt, RND is essentially ND-system, at least in
the sense that all proof resources of standard ND-system are present in it.
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Moreover, RND is ND-system of a very simple structure with only one proof
construction rule that covers all standard rules as special instances. Even
the modest practice shows that proofs in this system may be simpler than
in any standard ND. In particular, we are not forced to procure as many
subderivations as in ordinary ND-systems, due to β-rule. In fact, in case
we make an indirect derivation (we write down all possible assumptions) for
a thesis we do not need more show-lines than (the starting) one. This is
a consequence of the fact that in RND we can directly simulate standard
resolution system (see the next subsection). Hence, we can always build
proofs of the depth=1, which was impossible in other versions of ND exam-
ined so far. What is more, very often, even if we do not enter all possible
assumptions, we can avoid opening subderivations. Our first example was a
good illustration of the point. It should be underlined that in RND we can
often obtain direct proofs, and with no subderivations, of theses that are
normally proved in ND only by indirect proofs. Try, for example, to prove
Peirce law in RND.

4.4.3 Simulation of Resolution and DP in RND

It seems that we can use RND as a handy tool for proof search, and we
can do that in different ways. It is a consequence of the fact that RND
is general enough to simulate proof techniques from many known systems
which easily yield working decision procedures for CPL. It is not evident by
inspection of the system; some rules are certainly not analytic in any sense,
so the upper bound on the number of possible choices in proof search is not
limited in advance. In particular, (W ) is highly indeterministic. But we
can easily obtain several decision procedures by imposing some restrictions
on full RND as we did in case of standard ND, when producing its analytic
versions. Another question is a definition of specific algorithms of proof
search for RND. For the time being we confine ourselves only to showing
that the system is able to simulate in a step-wise manner not only proofs but
all kinds of deductive tasks, including model-extraction, which are realizable
in ordinary resolution and Davis/Putnam procedure.

First of all, we can simulate standard resolution derivations by stip-
ulating that we always write down all possible assumptions (i.e. we try
indirect proof), then we apply all elimination rules (only one direction of
(CNN), (Cα) and (Cβ)) until we get atomic clauses. This stage corre-
sponds to obtaining CNF of the input. Then we apply (Res) until ordinary
termination conditions for resolution are satisfied. Note that due to this we
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do not need to apply (W ) and building-up rules at all, and our derivation
obeys subformula property. Moreover, we do not need to introduce more
S-lines then the first one, and every proof thus obtained is of the depth=1.

Obviously, we are not forced to realize the simplest, and not very effi-
cient, strategy since we are not forced to make a preprocessing step that
corresponds to producing normal forms. We may freely intermingle the
application of (Res) with other rules if it may shorten a proof. Also, to
optimize the proof search in RND we can apply several known strategies
characteristic for resolution based provers (consult e.g. [68, 101, 179]).

Making a derivation for a nonderivable clause opens a lot of interesting
options concerning termination and building falsifying models, not neces-
sarily by using strategies taken from resolution. We can, for instance, easily
produce open derivations, where the set of U-clauses will be downward sat-
urated, by simulation of KE. Suppose that we have reached a stage where,
having applied all possible elimination rules, we obtained a set of atomic
clauses X containing n different literals. It is enough to introduce every
literal from this set and its complement as S-line and an assumption. Then
applying (Res) and [SUB] sufficiently often we must obtain n unit clauses
for each literal from X and this open derivation provides downward satu-
rated set.

The strategy of saturation may be significantly improved by simulation
of Davis/Putnam procedure which is one of the most efficient for CPL (cf.
Chapter 3 or [77], see especially [95] for clear presentation). Basically it
is performed by marking as used all clauses that cannot help to derive ⊥.
Recall that they are clauses containing tautologies (a rule of tautology), con-
taining pure literals (no occurrence of complement literal in other clauses –
pure literal rule), and being supersets of other clauses (subsumption rule).
The splitting rule is simulated by introducing unit clause with suitable lit-
eral ϕ as a show-line and its complement as indirect assumption. First, we
perform (Res′) using our assumption as one of the premises and clauses con-
tained above the last Show-line as the second premises. All the time we are
marking all superset-clauses as used. If this subderivation is completed, we
put it in a box, cancel SHOW in front of our chosen literal and repeat this
procedure, now using ϕ as one of the premises for applications of (Res′).
Otherwise, we will start the next Show-line with the next literal and its
complement as an assumption and repeat the procedure. Unit literal rule is
simply a special form of (Res′) with one premise being unit atomic clause.

The above remarks show informally that RND may be treated as a
simple frame suitable for direct simulation of several systems and strategies –
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despite their apparent differences. We can ask which properties of RND are
responsible for its flexibility. Why can RND simulate and combine proof
search procedures from so different systems like resolution and tableau based
systems like KE? It seems that the important reason for this flexibility is
the fact that RND applies cut in its full generality, whereas other systems
often use only one form. Let us explain what we mean by that. In Chapter
1 we have distinguished two forms of cut: progressive and regressive. First,
note that resolution is a special case of progressive application of cut.

(Res) Γ, ϕ − ϕ,Δ
Γ,Δ

Such a form of cut enables direct elimination of complementary formu-
lae. On the other hand, in KE and tableau systems we deal with regres-
sive application of cut. In Chapter 3 we have defined its form suitable for
Hintikka-style systems; we recall it for the reader’s convenience:

(R-Cut) Γ
Γ, ϕ | Γ,−ϕ

Although (R-Cut) in general is rather destructive for proof search since
it introduces the indeterminacy, its analytic applications are useful. It adds
complementary formulae in order to get some reductions in branches. So
these systems exploit two different sides of the very same mechanism. The
special feature of RND is the application of both sides in one system. Cut
is used progressively by means of (Res) and regressively by [SUB] applied
for indirect proof. It allows exploiting the full strength of cut in a proof
and explains why such different proof systems like resolution and KE are
simulated with the same ease. In fact, Davis/Putnam procedure is close
to RND in this respect but the use of both forms of cut is unnecessarily
restricted there – unit literal rule is a restricted form of resolution and
splitting rule, a restricted form of regressive cut. In RND we have simple
frame with unrestricted application of both forms of cut.

Let us underline that simulation of neither system uses (W ) or introduc-
tion rules. Moreover, [SUB] is used only once for simulation of resolution,
just in the beginning. In case of simulation of DP derivations [SUB] may be
used many times (exactly because of restricted forms of cut in DP) but ev-
ery application is analytic since S-line contains only subformulae of clauses
already present. It shows that we can provide restricted but complete ver-
sions of RND which are analytic. The version sufficient for simulation of DP
is a clausal counterpart of AND1, so we may call it ARND1. The version
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sufficient for simulation of resolution is even weaker since it requires only
one application of [SUB]; we may call it ARND0. Finally, a comparison
with AND2, shows that full elimination of (W ) and introduction rules is
not necessary for analyticity. In this way, by restricting application of these
rules, we can obtain one more version – ARND2 which is a counterpart of
AND2. More strictly:

1. The most restrictive ARND0 calls for only one S-line (the first one)
and only elimination rules and (Res) are used but all assumptions (i.e.
complements of elements of a proved clause) must be introduced. The
completeness of ARND0 follows from the completeness of standard
resolution system for CPL.

2. More liberal ARDN1 admits the introduction of other S-lines but with
the analytic restriction. We may enter SHOW:Γ provided Γ ⊆ Π,
where Π is a proved clause and Π is the set of all subformulae of Π
closed under addition of single negation.

3. ARDN2, in addition to ARND1 admits applications of weakening and
introduction rules but with the same analytic restriction, i.e. any ϕ
added by (W ), or ¬¬ϕ, α, β added by the respective introduction rules
must be in Π.

Let us note that: every ANDi, i ∈ {1, 2} derivation is a particular case
of ARNDi derivation, exactly as in case of relationship between ND and
RND. But ARND0 is not a generalization of any analytical version of ND
since a version with no subproofs and without clauses and (Cβ) would be
incomplete.

Finally, note that RND, despite its strong dependence on cut, is by no
means restricted to the simulation of only such systems that make use of
this rule. In Section 7.2 we have shown that AND1 may simulate tableau
trees, so it is obvious that ARND1 can make it too. But to facilitate direct
step-wise simulation we may introduce admissible proof construction rule
[SEP ] (from separation):

[SEP ] If X; Γ; Δ1 � ⊥, then X; Γ � Δ2, where Γ = Δ1 ∪ Δ2

It is a straightforward clausal generalization of the rule [β] which was
considered in Section 4.2 in the context of simulation of TS by ADN1. The
proof of its admissibility is simple and left to the reader.
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4.4.4 RND for First-Order Logic

RND may be easily extended to cover first-order logics in classical and free
version. In case of classical logic we can extend RND in the same way as
is usually done for resolution, supplying some general form of resolution
rule involving unification and factoring. Below we will just generalize the
original KM rules. There are three new rules of inference:

(C∀E) Γ, ∀xϕ / Γ, ϕ[x/τ ]
(C∃I) Γ, ϕ[x/τ ] / Γ, ∃xϕ
(C∃E) Γ, ∃xϕ / Γ, ϕ[x/y] , where y is new

In order to obtain a rule for introduction of ∀ we only need to generalize
slightly [SUB]. Now we require in side conditions that Δ ⊆∀ Γ, where by
⊆∀ we mean that for any ϕ ∈ Δ, either ϕ ∈ Γ or ∀xϕ ∈ Γ and x is not free
in X and Γ. This form will be called [SUB′].

It is straightforward to check that everything provable in KM for CQL
is provable with the help of these rules; so RND-CQL is complete. In
order to prove soundness we must proceed indirectly as in Chapter 2, by
providing RND version of KMG, showing its soundness and simulation of
KM by KMG. We leave details to the reader as well as defining RND rules
being counterparts of other ND formalizations of CQL.

Remark 4.2 Essentially the same rules for ∀ elimination and ∃ intro-
duction are in Borićić [53] and Cellucci [65] ND systems. For ∀ introduction
they apply inference rule with usual restrictions. For ∃ elimination Borićić
applies proof construction rule in Gentzen style, whereas Cellucci has infer-
ence rule but introducing Hilbert’s epsilon term. ♣

Similarly, we may enrich RND with clausal versions of quantifier rules
for free logic. The new inference rules go as follows:

(CF∀E) Γ, ∀xϕ ; Γ, Eτ / Γ, ϕ[x/τ ]
(CF∃I) Γ, ϕ[x/τ ] ; Γ, Eτ / Γ, ∃xϕ
(CF∃E) Γ, ∃xϕ / Γ, ϕ[x/y] ∧ Ey, where y is new

Once again we must slightly change [SUB]:

[SUB′′] If X ; ψ1 ; ..... ; ψk ; −ϕ1 ; ..... ; −ϕi � Δ , then X � Γ,
where: Γ is nonempty, Δ ⊆∀ Γ, {ϕ1, ..., ϕi} ⊆ Γ, i ≥0 , k ≥0 and for

any j ≤ k, ψj = Ex and ∀xϕ ∈ Γ.
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Informally, [SUB′′] admits an existential assumption (Ex) for any gener-
ally quantified formula in Γ keeping all other requirements as in the version
for classical first-order logic. Again, completeness of RND-FQL follows
from completeness of KM’, whereas soundness proof calls for the introduc-
tion of RND version of KMG’. One should try to do it according to the lines
of proof described in Chapter 2.



Chapter 5

Survey of Modal Logics

This Chapter provides a necessary background for studying applications of
ND in modal logics. It is a collection of basic facts needed for understanding
of the remaining chapters. Section 5.1. introduces propositional languages
of multimodal logics and establishes notational conventions. After a presen-
tation of general taxonomy of modal logics in Section 5.2. we characterize
them axiomatically in the next section. Section 5.4. introduces relational
semantics for different families of modal logics. Except standard Krikpe’s
semantics it contains the basics of neighborhood semantics for weak modal
logics. Some attention is paid to correspondence theory and some general
schemata investigated later. After short section on completeness and decid-
ability matters we finally present various kinds of first-order modal logic in
Section 5.6.

5.1 Basic Modal and Tense Language

Before we start with the presentation of ND-systems for modal logics we
recall the most basic and the most important (for our interests) facts con-
cerning standard modal languages and logics. Most of the information from
this chapter is introduced just to fix a notation and to keep the book self-
sufficient. The reader who needs deeper knowledge of the subject should
consult some textbooks, e.g. [35, 67, 112].

Let LM denote standard (mono)modal propositional language i.e. an
abstract algebra of formulae

〈FOR,¬,∧,∨,→,�,♦〉 (5.1)

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 137
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 5,
c© Springer Science+Business Media B.V. 2010
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with denumerable set of propositional symbols.

PROP = { p, q, r, . . . , p1, q1, . . .} ⊆ FOR (5.2)

Except standard boolean functors there is an additional pair of modals:
�,♦. Usually these symbols are used to denote unary modal operators of
necessity and possibility. It is an alethic interpretation, but of course many
other interpretations of temporal, epistemic or deontic character, may be
provided. Despite the possible interpretation, syntactically both functors
behave like negation, i.e.

• if ϕ ∈ FOR, then 
ϕ ∈ FOR, where 
 ∈ {�,♦}

Sometimes it is convenient to use a language with only one modal functor.
Languages of this kind will be denoted as L�,L♦. In such cases the other
functor will be understood as a definitional shortcut:

Definition 5.1 (�,♦) �ϕ := ¬♦¬ϕ ; ♦ϕ := ¬�¬ϕ

Languages (and logics) with one pair of modalities are commonly called
monomodal. But for many purposes they are not sufficient and the gener-
alization to multimodal languages with many modalities is quite natural.
For example, we may need to have alethic and deontic modalities together,
or to represent a knowledge of many agents in one system. In such cases
we must apply indices to distinguish different modalities, e.g. �a,♦b or
[a], 〈b〉. The latter notation is particularly useful when indices of modalities
have complex form, i.e., if we admit combined modalities. In case we want
just to point out that a logic has n distinct modalities we will usually use a
notation �i,♦i, (n ≥ i ≥ 1) in contrast to �n,♦n, which means that suit-
able modal constant is put n-times before some formula. Indices of modal
operators are variables running on different sets, e.g. in case of epistemic
logics they denote different agents.1 Multimodal languages with n (pairs
of) modalities will be denoted respectively as: LMn ,L�n ,L♦n .

In particular, we will be interested in temporal logic built in the lan-
guage LT, the bimodal variant of LM with interactive Priorean operators
�F ,♦F ,�P ,♦P designed for dealing with temporal interpretation of modal-
ities. We would rather use traditional symbols G,F,H, P for these operators
which are in common use. They are interpreted respectively as:

1In such case we read a formula �aϕ – a knows that ϕ holds.
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G for “always in the future” (instead of �F or [F ])
F for “sometimes in the future” (instead of ♦F or 〈F 〉)
H for “always in the past” (instead of �P or [P ])
P for “sometimes in the past” (instead of ♦P or 〈P 〉)

From the technical point of view LT is very important modal language
since except ordinary (forward-looking) modalities (G corresponding to �
and F to ♦) it has a pair of backward-looking operators H and P . It yields
an extra expressive power. In Chapter 11 we will consider even more expres-
sive functors A and E , called global modalities, and a difference modality
D.

Generally, formulae with modal operator or its negation as the main
functor will be called modal formulae, or shortly, m-formulae. For conve-
nience we will use in LMn the generalization of compact notation from [93],
where πi, or νi denote m-formula with functor of i-modality (1 ≤ i ≤ n), and
π or ν denote arguments of this functor, in accordance with the following
table:

πi νi π and ν

♦iϕ �iϕ ϕ
¬�iϕ ¬♦iϕ ¬ϕ

In particular, for bimodal temporal language LT we apply the following
notation:

πF πP νF νP π and ν

Fϕ Pϕ Gϕ Hϕ ϕ
¬Gϕ ¬Hϕ ¬Fϕ ¬Pϕ ¬ϕ

In case of monomodal language πi means simply ♦ϕ or ¬�ϕ. Following
this convention we will often divide m-formulae on π- or ν-formulae (or
�- and ♦-formulae, if we want to exclude cases with negated modality in
front of a formula). Note that the complement of every π-formula is always
ν-formula and conversely.

�Γ,♦Γ will denote sets of formulae obtained from the set Γ by adding
� or ♦ to every formula. Sets of formulae (clauses) consisting of only π-
(ν-) formulae will be called π- (ν-)sets (clauses) and denoted by Πi (Υi),
possibly with subscripts. Every occurence of a symbol Πk (or Υk) will
denote the set of formulae obtained from π-set Πi

k (Υi
k) by deleting all

modal functors of suitable sort; e.g. let ΥP
3 = {Hp,¬Pq,H(p→ r),¬P¬r},

then Υ3 = {p,¬q, p→ r,¬¬r}.
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5.2 Modal Logics in General

We recall rather standard characterization of the most important modal
logics, based on [69].2 Every modal logic is understood here as a set of for-
mulae containing all tautologies of CPL and closed under some operations
(rules). Formally:

Definition 5.2 (Modal Logic) Modal logic L is any set of formulae in
some modal language LMn which satisfies the following conditions:

• TAUT ⊆ L, where TAUT denotes the set of tautologies of CPL

• if ϕ ∈ L, then e(ϕ) ∈ L, where e is any endomorphism (substitution)
from PROP into FOR

• if ϕ ∈ L and ϕ→ ψ ∈ L, then ψ ∈ L

It is a very general characteristics of modal logic and hence of little interest
since no particular modal law or rule is specified. We have only substitutions
of classical tautologies in the richer language. In order to obtain more
interesting cases we must consider some specific modal formulae or rules.
For simplicity we formulate the basic classification for monomodal logics in
the language L�. Usually the main classes of modal logics are characterized
with the help of the following conditions/formulae.

(RE) if ϕ↔ ψ ∈ L, then �ϕ↔ �ψ ∈ L
(RM) if ϕ→ ψ ∈ L, then �ϕ→ �ψ ∈ L
(RC) if ϕ ∧ ψ → χ ∈ L, then �ϕ ∧ �ψ → �χ ∈ L
(RR) if ∧Γ → ψ ∈ L, then ∧�Γ → �ψ ∈L, where Γ �= ∅

(RG) if ϕ ∈ L, then �ϕ ∈ L
M �(ϕ ∧ ψ) → �ϕ ∧ �ψ
C �ϕ ∧ �ψ → �(ϕ ∧ ψ)
K �(ϕ→ ψ) → (�ϕ→ �ψ)
N ��

With the help of these specific modal principles one can distinguish the
following classes of modal logics being extensions of CPL.

• Every L closed under (RE) is congruent (also called classical or equiv-
alential)

2Cf. also [59] and [208].
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• Every L closed under (RM) (or every congruent L containing M) is
monotonic

• Every L closed under (RR) (or every monotonic L containing C) is
regular

• Every regular L closed under (RG) (or containing N) is normal.3

Obviously, every normal logic is regular, every regular is monotonic, and
monotonic is congruent, so we have a hierarchy of these classes. Since
every class is closed under taking products, we have in every family the
weakest logic . Let E denote the weakest congruent logic, M – the weakest
monotonic, R – the weakest regular, and K – the weakest normal logic4

Of course this is not the whole story since we can find some modal logics
not falling into any of the above category, like famous Lewis’ systems S1,
S2, S3. Generally, every logic containing E but not closed under (RE) is
called quasi-congruent, containing M but not closed under (RM) – quasi-
monotonic e.t.c.

The above systematization of modal logics may be generalized to mul-
timodal logics but usually the papers and books dealing with multimodal
logics, like e.g. [166, 100], are concerned rather with the investigation on
normal logics.5 No doubts, normal modal logics is the most popular and
investigated class of modal logics and many fundamental results are stated
only for them. This is the reason that in many textbooks they are the only
modal logics taken under consideration. It may be justified theoretically by
the fact that other classes of logics may be simulated by bimodal normal
logics.6 But this line of thought may be applied equally well to multimodal
normal logics since they are simulated by monomodal ones (Thomason’s
results from 1970s); and to modal logics in general, since they may be re-
duced to fragments of first- and second-order logic – cf. Section 5.4.3. In

3Usually elements of this class are defined in a bit different (but equivalent) way as
modal logics containing K and closed under (RG).

4We follow Chellas [69] in naming conventions (although he used the name classical
instead of congruent logics). Often different names are applied, particularly for regular
logics, e.g. instead of R, C is used by Segerberg [246] and Fitting [93], and C2 by Lemmon
[173].

5The exception is Gasquet [106], where multimodal regular and monotonic logics are
dealt with.

6This result was proved by Gasquet and Herzig [107] and improved by Kracht and
Wolter [167] and by Hansen [124].
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practice it is better to work directly with weak logics in these area where
they apply well7 and use simulation rather for transfer of results.

Multimodal logics may be homogenous or heterogenous. The former have
modalities of the same sort (characterized by the same properties), the latter
combine different kinds of modalities. In both cases a logic may be just a
simple fusion of a few systems with no interaction of distinct modalities.
If different modalities are independent of themselves (no interaction), the
results which hold for monomodal logics are straightforward to extend to
multimodal case. The situation is more interesting (and more difficult) for
multimodal logics with interactive modalities since their expressive power
is usually considerably stronger. The external sign of such a situation is
the presence of interactive principles like this simple instance of inclusion
axiom:

�aϕ→ �bϕ (5.3)

It means, under epistemic interpretation, that the knowledge of agent
b contains all the knowledge of agent a. The best, up-today exposition of
problems connected with combining logics may be found in [100].

In the group of interactive multimodal logics one of the most interest-
ing case is represented by bimodal temporal logics. In this book we limit
our interests to Priorean logics of instant time in the language LT, often
called tense logics in contrast to temporal logics applied in computer sci-
ence, like PTL.8 In the latter case rather different constants are often used
as primitive like e.g.: © (next moment), U (until), S (since), moreover, their
semantics is slightly different than standard relational semantics applied for
Priorean logics.

Priorean temporal logics are normal i.e. both (pairs) of modalities satisfy
(RR) and (RG) (as well as C,K and N). Moreover, they must contain
interactive principle (B-Te) expressing the symmetry of past and future:

ϕ→ �i♦jϕ, where i �= j ∈ {F, P} (5.4)

The weakest temporal logic satisfying these conditions is called Kt.
Note however that from the practical point of view some stronger logics
are treated as basic since we want to express at least such properties like
transitivity of time flow.

7Hansen [124] gives a couple of examples concerning interesting applications of mono-
tonic logics.

8Cf. e.g. [177, 116].
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We will be interested not only in normal logics but also in some con-
gruent, monotonic and regular ones. The first two classes will be called
weak modal logics, in contrast to strong modal logics including normal and
regular ones.

Weak modal logics are not very popular, many good books on modal
logic do not even mention them, as we have already noted. The investi-
gations on proof methods and decision procedures for such logics are also
rather modest. Although these remarks partly apply to regular logics as
well, there are good reasons to keep them together rather with normal log-
ics. The important rationale for such a division lies in the applicability of
systems. It is well known that epistemic or doxastic interpretation of modal
constants leads to unintuitive results in the context of normal or regular
logics. This is the main reason that weaker logics are often considered as
better candidates in this area.

There is also a good semantical criterion for treating congruent and
monotonic logics as a separate category. Most normal and regular modal
logics are characterizable by Kripke frames (cf. Section 5.4), but for con-
gruent and monotonic systems this approach fails. Because of that semantic
uniformity, Fitting’s fundamental work [93] on proof methods for modal log-
ics covers also many regular (and quasi-regular) ones, but no weaker logic,
except M (called U in [93]). Fortunately, congruent and monotonic logics
are also characterizable in terms of some possible world-based semantics,
namely by neighbourhood (called also minimal – cf. [69]) frames. This is
more general kind of semantics and perhaps not so handy in use although
intuitively as natural as Kripke semantics.

5.3 Axiomatic Approach to Modal Logics

The earliest and still the most popular syntactic style of defining modal
logics was axiomatic (or Hilbert). We recall here well known axiomatizations
of the four weakest monomodal logics for easy reference.

(a) Hilbert formalization of the weakest congruent modal logic E denoted
by H-E consists of:

1. Axioms of CPL (cf. Section 1.1, but any complete set is suitable)

2. Axioms of E:

Pos ♦p↔ ¬�¬p
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3. Rules:

(MP ) �E ϕ→ ψ,�E ϕ / �E ψ
(RE) �E ϕ↔ ψ / �E �ϕ↔ �ψ
(SUB) �E ϕ / �E e(ϕ),

where e : PROP −→ FOR

(b) Hilbert formalization of the weakest monotonic modal logic M denoted
by H-M consists of:

1. Axioms of CPL

2. Axioms of M (only Pos like in H-E)

3. Rules – (MP ), (SUB) and:

(RM) �M ϕ→ ψ / �M �ϕ→ �ψ

(c) Hilbert formalization of the weakest regular modal logic R denoted by
H-R consists of:

1. Axioms of CPL

2. Axioms of R – Pos and:

K �(p→ q) → (�p→ �q)

3. Rules – like in H-M

(d) Hilbert formalization of the weakest normal modal logic K denoted by
H-K consists of:

1. Axioms of CPL

2. Axioms of K – like in H-R

3. Rules – (MP ), (SUB) and:

(RG) �K ϕ / �K �ϕ

�L ϕ means of course that ϕ is a thesis of respective system H-L i.e.
has a proof in H-L being a sequence of formulae deduced from axioms by
means of primitive rules. �L Γ means that all formulae in Γ are theses of
respective system. The set of all theses of L will be denoted by Th(L). �L ϕ
means that ϕ is not a thesis of L.
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It is evident that axiomatic characterization is closely related to abstract
definition of normal modal logics as sets satisfying some closure conditions.
So in what follows for simplicity we will identify modal logics with their
stated axiomatizations and use notation � ϕ, whenever L is established or
unimportant.

Other important modal logics may be obtained by the addition of some
extra axioms to our basic Hilbert formalizations. The following table dis-
plays schemata of the most popular axioms.9

Name Axiom
D �ϕ→ ♦ϕ
�D �(�ϕ→ ♦ϕ)
DC ♦ϕ→ �ϕ
T �ϕ→ ϕ
�T �(�ϕ→ ϕ)
4 �ϕ→ ��ϕ
�4 �(�ϕ→ ��ϕ)
4C ��ϕ→ �ϕ
B ϕ→ �♦ϕ
�B �(ϕ→ �♦ϕ)
5 ♦ϕ→ �♦ϕ
2 ♦�ϕ→ �♦ϕ
M �♦ϕ→ ♦�ϕ
3 �(�ϕ→ ψ) ∨ �(�ψ → ϕ)
L �(�ϕ ∧ ϕ→ ψ) ∨ �(�ψ ∧ ψ → ϕ)
F �(�ϕ→ ψ) ∨ (♦�ψ → ϕ)
R ♦�ϕ→ (ϕ→ �ϕ)
G �(�ϕ→ ϕ) → �ϕ
Grz �(�(ϕ→ �ϕ) → ϕ) → ϕ
Go �(�(ϕ→ �ϕ) → ϕ) → �ϕ

We will follow the convention of Lemmon in naming logics; if a logic is
axiomatized by addition of axioms X,Y, Z, to say K, then we call it KXYZ
(possibly with application of dots as punctuation marks if the natural num-
ber is the name of the axiom). The exception to this principle applies to
some well known normal logics commonly called:

9The names of axioms – with little exceptions – come from [117].
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D = KD
T = KT
B = KTB
S4 = KT4
S5 = KT5

Particularly important class of modal logics contains all systems built
as combinations of axioms: D, T , B, 4 and 5 over E, M, R, K. We will
call them basic modal logics. How many different logics of this kind do we
find? Although in every class there is 32 (= 25) possible combinations there
is not so many different logics because some sets of axioms yield the same
logic. It is the result of the following deductive interrelations:

Lemma 5.1

CPL + T � D E + T + 5 � 5 M +B + 4 � 5
CPL + T + 5 � B E +B + 4 +D � 4 M +B + 5 � 4
CPL +D + 4 +B � T E +B + T � N M +B � N

In the light of this result e.g. S5 = KT45 = KTB4 = KT5. In the
first three cases we have used the form CPL+X because we want to stress
that there is no use of (RE) or (RM) in the proof. As a result there is
18 distinct congruent logics, 15 monotonic logics, 12 regular logics and 15
normal logics axiomatized with D,T, 4, B, 5. To this number we can add
also 16 congruent logics with (RG) and 10 monotonic logics with the same
rule, since – due to the lack of K in these logics – they are not normal. In
particular, the lattice of monotonic logics is isomorphic to the well known
lattice of normal logics obtained by the combination of these axioms over
K. Relatively smaller number of regular logics follows from the fact that
any regular logic containing B is normal.

It is important to note that all axioms (and many others) characterizing
particular basic logics are special instances of Geach Axiom:

♦m�nϕ→ �s♦tϕ (5.5)

For example: 5 is the case with m = s = t = 1 and n = 0, whereas T
has n = 1 and m = s = t = 0; axiom 2 is the special case of Geach axiom
with all modalities having just one occurrence.

But not all axioms from the table fall under general schema of Geach
Axiom. Among logics that are axiomatized by formulae of different shape
we will pay special attention to normal logics axiomatized with the help
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of axiom 3 and L. They are called here linear logics because they serve
to formalize several kinds of linear order on model domains (c.f. the next
section) The weakest logic of this kind is called K4.3 = K4L, and its
minimal extensions are K4D.3 = K4DL and S4.3. Both axioms are often
replaced by some equivalents of the form:

3′ ♦ϕ ∧ ♦ψ → ♦(♦ϕ ∧ ψ) ∨ ♦(ϕ ∧ ♦ψ)
L′ ♦ϕ ∧ ♦ψ → ♦(♦ϕ ∧ ψ) ∨ ♦(ϕ ∧ ♦ψ) ∨ ♦(ϕ ∧ ψ)

For axiomatic characterization of Kt we must double K,Pos and (RG)
in H-K by putting G (or H) instead of � and F (or P ) instead of ♦.
We need also a pair of interactive axioms concerning interrelation between
future and past (cf. Formula 5.4.):

GP p→ GPp
HF p→ HFp

All other temporal logics are obtained by the addition of some further
axioms to H-Kt. Usually Kt4 is treated as the basic logic in this family,
because the addition of 4 formally express the transitivity of time flow. One
should note that in case of temporal logics we have two counterparts of
every axiom from the table, e.g. for 4 we have:

4F Gϕ→ GGϕ and
4P Hϕ→ HHϕ

To obtain a formalization of Kt4 it is enough to add only one of them to
Kt since they are interderivable. But such interderivability is not a rule but
rather an exception. When constructing strengthenings of Kt with the help
of temporal counterparts of axioms from the table, one should remember
that in many cases we can obtain independent variants for both modalities
(heterogenous logics). For example, DF − Gϕ → Fϕ and DP − Hϕ →
Pϕ are independent, so we can obtain three different extensions of Kt:
homogenous KtD = KtDF.DP and two different heterogenous logics –
KtDF and KtDP. In particular, this remark applies to linear temporal
logics — if we want, e.g. Kt4.3, we must add to Kt4 both temporal
variants of L; an addition of only one of them yields the logics of tree-like
structures. One should note that the richer language of temporal logics may
express linearity with the help of more compact formulae:

LF Hϕ ∧ ϕ ∧Gϕ→ GHϕ
LP Hϕ ∧ ϕ ∧Gϕ→ HGϕ
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Axioms 3F and 3P may be obtained from the above formulae just by
deletion of ϕ from conjunction in antecedents of LF and LP .

In the field of multimodal logics we may also distinguish a class of logics
axiomatized by instances of multimodal version of Geach axiom, called in
Catach [64] Ga,b,c,d or a, b, c, d-incestuality axiom:

♦a�bϕ→ �c♦dϕ (5.6)

where a, b, c, d are indices of, not necessarily different, modalities. At first
sight it may seem that this formula is not as general as Geach axiom, be-
cause only one occurrence of each modality is present. But one should note
that any of a, b, c, d may represent a complex modality obtained by compo-
sition or union of simpler modalities. Thus [a; b] denotes a composition of
a-necessity and b-necessity, whereas [a∪ b] denotes their union. These oper-
ations are defined as follows: [a; b]ϕ := [a][b]ϕ and [a∪b]ϕ := [a]ϕ∧[b]ϕ.10 If
we take under consideration also empty modality [ε], then it is obvious that
schema Ga,b,c,d covers all possible instances of Geach axiom and many more.
In particular, most of the interactive principles considered in literature are
instances of this schema with some of a, b, c, d different. For example: both
temporal axioms GP and HF are cases with a = b = ε and c = F, d = P
or c = P, d = F , whereas simple inclusion axiom has a = d = ε.

All normal (i.e. satisfying K and (RG) for each modality) multimodal
logics axiomatized by instances of Ga,b,c,d only, will be called, after Cat-
ach, incestual modal logics. Clearly, if complex (and empty) modalities are
admitted we must add also for each a, b, axioms of the form:

[ε]ϕ↔ ϕ
[a; b]ϕ↔ [a][b]ϕ
[a ∪ b]ϕ↔ [a]ϕ ∧ [b]ϕ

This wide class may be divided further on serial, symmetric, euclidean
and other logics if we restrict admissible axioms to schemata with some
of a, b, c, d being ε, e.g. axioms with a = c = ε give us a class of se-
rial logics, whereas with a = d = ε give a class of grammar or inclusion
logics. For more on these subdivisions and properties of distinct classes
c.f. Baldoni [18, 19]. To appreciate the generality offered by the schema
of a, b, c, d-incestuality axiom, note that it covers not only all instances of

10It may be of interest to consider also other operations on modalities. Resolution and
labelled tableau systems for some logics of this kind are provided by De Nivelle, Schmidt
and Hustadt [196, 242].
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Geach axiom with different modalities, but also, due to the operation of
union of modalities, implications with conjunctions as antecedents or conse-
quents. For instance, one may easily observe that axioms LF and LP may
be rewritten as [P ∪ ε∪ F ]ϕ→ [F ;P ]ϕ and [P ∪ ε∪ F ]ϕ→ [P ;F ]ϕ respec-
tively. In result, linear temporal logics like Kt4.3 also belong to the class
of incestual logics. This is in contrast to monomodal case, where axioms
like L or 3 do not fall under Geach axiom schema.

5.3.1 Deducibility

The relation of deducibility (provability) may be defined in two nonequiva-
lent ways:

Definition 5.3 (Local (�) and global (�) deducibility)

• Γ �L ϕ iff �L ψ1 ∧ .... ∧ ψn → ϕ, where {ψ1, ..., ψn} ⊆ Γ

• Γ �L ϕ iff there is a proof of ϕ in L, where formulae from Γ are also
used as premises for the application of rules

On the ground of at least congruent modal logics � is stronger than �,
because the closure under any of (RE), (RM), (RR), (RG) means that for
� the deduction theorem in simple form does not hold.11 For example in
K we have p � �p (due to the closure under (RG)), but p � �p (since
�K p→ �p). We have only a dependance in one direction:

if Γ �L ϕ, then Γ �L ϕ

For �, the deduction theorem is satisfied by definition; in particular one
should note that:

Γ �L ϕ iff ϕ is deduced from Γ ∪ Th(L) by only one rule (MP )

Different authors have different preferences concerning the importance
of both relations. Only few of them treat both as equally important; in
particular, Fitting [93] applies clever complex notation:

Γ �L Δ �L ϕ
11It does not mean that deduction theorem in weaker form does not hold for these

logics. Many theorems of this kind were established by Perzanowski in [206, 207].
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which means that ϕ has a proof in which formulae from Γ are global assump-
tions (axioms), and elements from Δ are local assumptions. A distinction
between these two types of assumptions may be well understood e.g. in
terms of interactive proof engines. In such a context elements of a knowl-
edge base are global assumptions, whereas data provided by the user are
local assumptions.

Because the rules of ND-systems and other calculi naturally generate
relations of the type �, in what follows we will be rather interested in the
first (weaker) notion of deducibility, incidentally noting how to formalize
�. In particular, we define Γ as L-inconsistent iff Γ �L ⊥; otherwise Γ is
L-consistent.

Primitive rules of axiomatic systems are theoretically sufficient, but in
practice one can use many others in order to obtain shorter proofs. We
divide secondary (or additional) rules on two groups12:

• Γ / ϕ is L-derivable iff Γ �L ϕ

• Γ / ϕ is L-admissible iff �L Γ implies �L ϕ

Clearly, every L-derivable rule is also L-admissible, but the opposite usually
does not hold for the logics under consideration. The syntactic proofs of
admissibility of rules are sometimes hard to obtain. Note also that the set
of derivable rules is preserved with respect to stronger logics, but it does
not hold for admissible rules in general. These two classes of rules will be of
interest for us not in the context of axiomatic systems but rather in other
kinds of deductive systems. For considerations on their interrelations it will
be crucial to show that some rules primitive in one system may be shown
to be secondary in the other.

5.4 Relational Semantics

Now we focus on semantical characterization of modal logics. The most
popular semantic approach to normal modal logic is based on the use of
relational frames (models) often called possible worlds semantics or Kripke
frames, although independently of Saul Kripke [169] semantics of this kind
were introduced by many other logicians e.g. [160, 132].13 Although this
approach has serious limitations – it is not suitable not only for weak modal

12This is a particular exemplification of distinctions introduced in Chapter 1.
13Detailed history of these early investigations may be found in [71].
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logics (like congruent or monotonic) but also for many normal and regular
ones (cf. e.g. [112]) – it is still the most popular and simple way of inter-
preting normal modal logics. The popularity of this approach is connected
with the fact that it offers a very natural and philosophically motivated in-
terpretation of modal operators. It is also a natural tool for interpretation
of many other nonclassical logics like intuitionistic logic and superintuition-
istic logics being sublogics of CPL, conditional logics or relevant logics. In
the family of regular logics this kind of semantics needs adjustments, we
describe them briefly in Section 5.4.4. For weak logics we need a different
kind of semantics due to Scott [245].14

Definition 5.4 (Frame) A modal frame is a structure F = 〈W,R〉, where
W �= ∅ is the set of states (possible worlds), and R is a binary relation on
W, called accessibility relation.

In alethic modal logics Rww′ means that w′ is accessible from w (possible
relative to w); R(w) = {w′ : Rww′} is the set of all alternatives for w.
Frames for monomodal logics have only one such relation. In multimodal
case instead of R we have a family of accessibility relations, each for one
(pair of) modalities. For example, in bimodal temporal logics we may use
frames 〈W,RF ,RP 〉, where W is the set of time instants, RF is the relation
of time succedence, and RP is the relation of time precedence. Complex
modalities are interpreted set-theoretically i.e. Rε is an identity relation,
Ra;b := Ra ◦ Rb, and Ra∪b := Ra ∪ Rb. In practice, for temporal logics we
can still use frames with only one relation since the intended meaning of
the second one is the converse of the first. So it is simpler to define:

Definition 5.5 (Temporal frame) A temporal frame is a structure T =
〈T , <〉, where T �= ∅ is the set of time-instants and < is a binary relation
on T – the flow of time relation.

Definition 5.6 (Model) A model on the frame F (or T) is any structure
M = 〈F, V 〉, where V is a valuation function on atoms (V : AT −→ P(W)).
The set of all points of a model M will be referred to as WM; the set of all
models on a frame F will be referred to as MOD(F).

For temporal logic models are defined analogously on T. In what follows,
we will usually state facts in general for modal logic and only in cases where
the use of temporal language leads to different results we will point out the
differences.

14One should note however that M is adequately characterized in terms of multimodal
frames with countably many accessibility relations – cf. [93].
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5.4.1 Interpretation

Due to the more complicated character of a semantics, the notion of an
interpretation of a formula (and related semantical concepts) may be defined
on different levels. The most basic is the notion of satisfaction of a formula
in a state of a model, which is defined as follows:

M, w � ϕ iff w ∈ V (ϕ) for any ϕ ∈ PROP
M, w � ¬ϕ iff M, w � ϕ
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � ϕ→ ψ iff M, w � ϕ or M, w � ψ
M, w � �ϕ iff M, w′ � ϕ for any w′ such that Rww′

M, w � ♦ϕ iff M, w′ � ϕ for some w′ such that Rww′

and for temporal operators:

M, t � Gϕ iff M, t′ � ϕ for any t′ such that t < t′

M, t � Fϕ iff M, t′ � ϕ for some t′ such that t < t′

M, t � Hϕ iff M, t′ � ϕ for any t′ such that t′ < t
M, t � Pϕ iff M, t′ � ϕ for some t′ such that t′ < t

In case when model is established we will simply write w � ϕ. The
set of all states where ϕ is satisfied in a model will be denoted as ‖ϕ‖M.
Formally: ‖ϕ‖M = {w ∈ WM : w � ϕ}. Usually we will use simply ‖ϕ‖
when M is established or unimportant. ‖ϕ‖ is sometimes called a proposition
expressed by ϕ. Although there are serious obstacles for considering this
as a representation of a logical proposition we also follow this convenient
habit.

The preceding definition states conditions for local (at a state in a model)
satisfiability. Naturally the next step is the concept of global satisfiability
in a model (and some related notion), defined as follows:

• M � ϕ iff ∀w∈WM
,M, w � ϕ (or ‖ϕ‖M = WM)

• the content of a model M is E(M) = {ϕ : M � ϕ}

Formulae globally satisfiable are often called universally true in a model.
Both notions of satisfiability as well as other concepts may be extended to
sets of formulae in the following way:

• M, w � Γ iff ∀ϕ∈Γ,M, w � ϕ
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• M � Γ iff ∀ϕ∈Γ,M � ϕ

• ‖Γ‖M =
⋂
‖ψ‖M for ∀ψ∈Γ

We say that Γ (or ϕ) is simply satisfiable iff there is some model and a state
which locally satisfies Γ, otherwise Γ is unsatisfiable. In a dual manner we
may define falsifiability – formally:

Definition 5.7 (Satisfiability, falsifiability) ϕ (Γ) is satisfiable in a model
M iff ‖ϕ‖ �= ∅ (‖Γ‖ �= ∅);
ϕ (Γ) is satisfiable iff, there is a model, where it is satisfiable;
ϕ (Γ) is falsifiable in a model M iff ‖ϕ‖ �= WM (‖Γ‖ �= WM)

(or: M falsifies ϕ (Γ));
ϕ (Γ) is falsified iff, there is a model which falsifies it

And the last handy notion: the set of all models, where ϕ (or Γ) is
globally satisfied is denoted as

Mod(ϕ) = {M : M � ϕ} (Mod(Γ) = {M : M � Γ})

5.4.2 Normal Logics

Semantical characterization of modal logics is connected not with particular
models but with frames and their sets, otherwise we do not secure the closure
under substitution.15 This leads to further generalization of the notion of
interpretation, namely validity at a state on a frame and validity on a frame.
Both relations (and some related concept) are defined as follows:

• F, w � ϕ iff ∀M∈MOD(F),M, w � ϕ

• F � ϕ iff ∀M∈MOD(F),M � ϕ

• the content of a frame F is E(F) = {ϕ : F � ϕ}.

These relations may be generalized in a natural way to classes of frames (de-
noted by F) which is of great importance for defining modal logics. Why?
At this stage it is easy to observe that any E(F) is a normal logic. But
the domain of any frame (the number or a character of objects) is of no
importance for defining logics, only properties of accessibility relations play

15Of course, if we drop this condition from the definition of modal logic, we may char-
acterize logics in terms of models – the content of every model is a modal logic in this
sense (indeed normal logic). Such more general approach is presented e.g. in [112].
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essential role in this respect. So dealing with uniform (modulo accessibility
relations) classes of frames (or models) gives us the proper level of abstrac-
tion. In what follows we will be talking about classes of frames (models)
with the same sort of relation (in monomodal case). For example, we will
say that F (the class of frames) or M (the class of models) is reflexive, if
every frame F ∈ F is reflexive (every model M ∈ M is reflexive), i.e. the
relation of accessibility in every frame belonging to F is reflexive. We will
use also generalizations of aforementioned concepts, in particular:

MOD(F) is the class of all models built on any frame from F (or in other
words MOD(F) =

⋃
{MOD(F) : F ∈ F});

E(F) =
⋂
{E(F) : F ∈ F} denotes the content of the class of frames F

(analogously E(M) denotes the content of the class of models M);

ModF (ϕ) = Mod(ϕ) ∩MOD(F).

If we take the class of all frames we obtain the concept of (sheer) validity
of a formula:

|= ϕ iff ∀F,F � ϕ

It is well known fact that the set of all valid formulae in LM coincides
with K. That is K = E(K), where K denotes the set of all frames. Similarly
the set of all valid formulae in LT coincides with Kt.

Stronger logics over K or Kt are modeled by restricting the class of
frames to those that satisfy some conditions on accessibility relation. This
leads to the concept of restricted validity on the suitable class of structures:

|=F ϕ iff ∀F∈F ,F � ϕ iff ϕ ∈ E(F)

If some normal logic L is characterized in this way by some F we will
say that F determines L.

We say that Γ is F-satisfiable (F-unsatisfiable) if we restrict ourselves
only to models belonging to MOD(F).

In fact, the set of validities (or the content) of any F is a normal modal
logic, although not every normal modal logic is characterized by some class
of frames. Since, in what follows we will be dealing only with logics that
posses such a characterization, we will usually identify logics with suitable
sets of validities, but distinguish their several syntactic formalizations.
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5.4.3 Expressive Strength of Ordinary Modal Language

We have already mentioned that important normal modal logics are de-
termined by classes of frames satisfying some properties on accessibility
relations. A great success of Kripke (and other relational) semantics in
characterization of many modal logics, has led to more systematic research
on the expressive power of modal languages. Among others, serious in-
vestigations started on the applicability of modal languages as description
languages for several relational structures used in AI. In 70-ties van Ben-
them laid down the foundations of so called correspondence theory. But
why modal languages may be used for talking about relational structures,
and how much can they express? It is possible because formulae of LM

correspond to some relational conditions; more precisely:

Definition 5.8 (Correspondence) ϕ defines the class of structures F iff
∀F(F � ϕ iff F ∈ F)

For example, well known axioms: T : �ϕ → ϕ defines reflexivity, 4:
�ϕ → ��ϕ defines transitivity. The following table displays well known
correspondencies for many axioms displayed in the table from Section 5.3.

Name Condition Axiom
Seriality (successors) ∀x∃yRxy D
Almost-seriality ∀xy(Rxy → ∃zRyz) �D
Almost-functionality ∀xyz(Rxy ∧Rxz → y = z) DC
Reflexivity ∀xRxx T
Almost-reflexivity ∀xy(Rxy → Ryy) �T
Transitivity ∀xyz(Rxy ∧Ryz → Rxz) 4
Almost-transitivity ∀xyzv(Rxy → (Ryz ∧Rzv → Ryv)) �4
Density ∀xy(Rxy → ∃z(Rxz ∧Rzy)) 4C
Symmetry ∀xy(Rxy → Ryx) B
Almost-symmetry ∀xyz(Rxy ∧Ryz → Rzy) �B
Euclideaness ∀xyz(Rxy ∧Rxz → Ryz) 5
Church-Rosser property ∀xyz(Rxy ∧Rxz → ∃v(Ryv ∧Rzv)) 2
(or directedness)
Strong (right) connectedness ∀xyz(Rxy ∧Rxz → Ryz ∨Rzy) 3
Weak (right) connectedness ∀xyz(Rxy ∧Rxz → Ryz ∨Rzy ∨ y = z) L
F ∀xyz(Rxy ∧ ¬Ryx→ (Rxz → Rzy)) F
R ∀xyz(Rxy ∧ x �= y → (Rxz → Rzy)) R
Predecessors ∀x∃yRyx DP
Strong (left) connectedness ∀xyz(Ryx ∧Rzx→ Ryz ∨Rzy) 3P
Weak (left) connectedness ∀xyz(Ryx ∧Rzx→ Ryz ∨Rzy ∨ y = z) LP
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On the basis of the table we may establish many determination results
for numerous normal logics; e.g. S4 is determined by the class of frames
with quasi-ordering accessibility relation (i.e. reflexive and transitive), since
S4 = KT4, T defines reflexivity, and 4 – transitivity.

In what follows we will be using the notation MOD(L) instead of
MOD(F) and |=L instead of |=F , whenever L = E(F). Any F from F
will be called an L-frame, and any model on such a frame – an L-model.
We will apply names: serial logics, reflexive logics, linear logics e.t.c. – for
classes of logics determined by suitable classes of frames.

Moreover, a standard modal language is expressive enough to define
not only elementary (i.e. first-order) conditions but also many important
conditions which are expressible in second-order language, e.g. McKinsey
axiom M : �♦ϕ → ♦�ϕ.16 On the other hand, conditions below the line
are not definable in LM; to express them we must use a bimodal language
LT (namely axioms DP, 3P,LP ).

The main tool for investigations in correspondence theory is the stan-
dard translation function STx which translates modal formulae into first-
order formulae with one free variable, in accordance with the definition of
satisfaction relation. It may be defined as follows:

STx(p) = Px
STx(⊥) = x �= x
STx(¬ϕ) = ¬STx(ϕ)
STx(ϕ
 ψ) = STx(ϕ) 
 STx(ψ)
STx(♦ϕ) = ∃y(Rxy ∧ STx/y(ϕ))
STx(�ϕ) = ∀y(Rxy → STx/y(ϕ))

where 
 ∈ {∧,∨,→} and y is a variable not occurring in STx(ϕ).

Since relational models may be treated as models for first-order corre-
spondence language, it may be shown that:

Lemma 5.2 For all ϕ,w,M,F the following holds:

M, w � ϕ iff M, axw � STx(ϕ)
M � ϕ iff M � ∀xSTx(ϕ)

F, w � ϕ iff F, axw � ∀P1, ...,∀PnSTx(ϕ)
F � ϕ iff F � ∀P1, ...,∀Pn∀xSTx(ϕ)

16In fact, this condition is first-order definable in reflexive and transitive frames.
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where P1, ..., Pn are standard translations of all propositional symbols in
ϕ, and M, axw � STx(ϕ) means that STx(ϕ) is satisfied in M under an
assignment axw where w is a value of free variable x in STx(ϕ)

This lemma shows that on the level of models standard modal language
corresponds to first-order language, whereas on the level of frames it cor-
responds to second-order language. But this is only a general result; in
fact there is a lot of elementary (first-order) frame conditions equivalent
to second-order standard translations of modal formulae. Conditions men-
tioned above, like reflexivity, symmetry or transitivity may serve as good
examples. The most general result showing which modal formulae define
first-order conditions is due to Sahlqvist.

Definition 5.9 (Sahlqvist formula) Let boxed formula be any formula
of the form �nϕ, n ≥ 0 (called boxed atom, if ϕ ∈ AT ), negative formulae be
any formulae where each occurrence of an atom is in the scope of odd number
of negations (otherwise it is positive). ϕ → ψ is Sahlqvist implication iff ϕ
is built up from �,⊥, boxed atoms and negative formulae with the help of
∨,∧ and ♦, and ψ is a positive formula. Finally, Sahlqvist formula is any
boxed Sahlqvist implication, boxed conjunction of them, and a disjunction
of Sahlqvist formulae that have no atoms in common.

The definition is quite complicated but it covers a large class of modal
formulae and it will be an important point of reference for discussion on
hybrid language expressivity in Chapter 11. Two important results are
based on this concept:

Theorem 5.1 (Sahlqvist Correspondence) Every Sahlqvist formula ϕ
is equivalent on frames to some first-order condition effectively computable
from ϕ by so called Sahlqvist-van Benthem algorithm.

Theorem 5.2 (Sahlqvist Completeness) Let Γ be any set of Sahlqvist
formulae, then H-K + Γ is strongly complete for the class of frames defined
by Γ.

H-K + Γ is an axiom system obtained from H-K by the addition of
Γ as the set of additional axioms. The last theorem is very important
since we obtain automatically the completeness result for any logic which is
axiomatizable by Sahlqvist formulae only.

One may observe that Geach axiom ♦m�nϕ→ �s♦tϕ is (a quite simple)
instance of Sahlqvist formula. We are not going to formulate a first-order
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condition corresponding to Sahlqvist formula since it is even more compli-
cated task, but the condition corresponding to Geach axiom is easy to state.
It is just a generalization of Church-Rosser property corresponding to axiom
2

∀xyz(Rmxy ∧Rsxz → ∃v(Rnyv ∧Rtzv)) (5.7)

where m,n, s, t denote the lengths of R-paths in each case.
a, b, c, d-incestual axiom defines the following frame property:

∀xyz(Raxy ∧Rcxz → ∃v(Rbyv ∧Rdzv)) (5.8)

where a, b, c, d are indices of suitable, possibly complex modalities.
Although expressive abilities of LM exceed first-order language (McK-

insey axiom is an example) they have also serious limitations. Indeed, there
are a lot of first-order conditions, often very simple, that are not modally
definable even in LT. Below we list some of the more important:

Name Condition
Irreflexivity ∀x¬Rxx
Asymmetry ∀xy(Rxy → ¬Ryx)
Antisymmetry ∀xy(Rxy ∧ x �= y → ¬Ryx)
Intransitivity ∀xyz(Rxy ∧Ryz → ¬Rxz)
Right directedness ∀xy∃z(Rxz ∧Ryz)
Dichotomy ∀xy(Rxy ∨Ryx)
Trichotomy ∀xy(Rxy ∨Ryx ∨ y = z)
Right discreteness ∀xy(Rxy → ∃z(Rxz ∧ ¬∃v(Rxv ∧Rvz)))

A famous Goldblatt–Thomason theorem establishes model theoretic cri-
teria for definability of first-order conditions (for details consult e.g. [35]):

Theorem 5.3 Elementary class of frames is definable by the set of modal
formulae iff it is closed under construction of generated frames, disjoint
unions and bounded morphic images, and reflects ultrafilter extensions.

Which means that a first-order property of such a class of frames is
preserved under taking one of these three operations, whereas its negation
is preserved under taking ultrafilter extensions. All the classes of frames
that satisfy some conditions from the table, break at least one of the four
requirements, e.g. irreflexivity and asymmetry are not preserved under
bounded morphic images. There are interesting general schemata of first-
order formulae that are undefinable by standard modal languages because
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they cover conditions like irreflexivity. Some of the most important general
classes of this sort are Horn clauses and geometric theories discussed in
Section 1.1.5. Note that if we count ⊥ as atom, irreflexivity may be stated
as Horn clause of the form ∀x(Rxx → ⊥); it is easy to find similar Horn
formulations for asymmetry, antisymmetry, intransitivity.

There are some ways to overcome limitations of standard modal lan-
guages, e.g. the use of nonstructural rules of Gabbay [98]. But for other
conditions it is not so simple and we need richer languages like hybrid ones
that will be introduced in Chapter 11. As we will see, such richer languages
allow of significant extensions of correspondence theory to important con-
ditions undefinable by standard modal languages.

5.4.4 Regular Logics

Regular logics are not characterizable by ordinary Kripke frames but need
some adjustments, namely the addition of a special category of worlds called
nonnormal or queer.

Definition 5.10 (Augmented frame) An augmented modal frame is a
structure F = 〈W,Q,R〉, where W �= ∅ is the set of states (possible worlds),
Q ⊆ W is possibly empty set of queer worlds, and R is a binary relation on
W, called an accessibility relation.

Models on augmented frames are defined exactly as in Section 5.4.1
but the definition of satisfiability relation must be changed a bit. For all
nonmodal formulae it is kept intact, for modal formulae we have a division
of ways. For every w ∈ W −Q (we may call them normal worlds) we have
the same definition as before, but for queer worlds we just stipulate for every
ϕ:

M, w � ♦ϕ and M, w � �ϕ

R is characterized by the class of all augmented frames. As for stronger
regular logics, we focus on the family of basic regular logics. But even in
this family we must get rid of symmetric and euclidean logics if we want
to consider those basic logics that are characterized by some classes of aug-
mented frames. Reasons for that are simple: B simply forces every world
to be normal, whereas 5 makes every queer world automatically normal to
the same effect. Of course one can consider weaker forms of suitable axioms
specific for this class of logics. For example, in Fitting [93] the class of
regular logics of symmetric frames is described, axiomatized by the formula
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B′: ϕ→ (�� → �♦ϕ). D,T and 4 may be combined over R giving logics
characterizable by classes of augmented frames, but suitable conditions on
frames must be slightly modified as well. Reflexivity is restricted to normal
worlds, whereas seriality is partly restricted:

seriality’ ∀w∈W−Q∃w′∈WRww′

In case of logics containing 4 we must have an additional global con-
dition of closenesses on frames: every world accessible to normal world is
also normal. Transitive regular logics characterized by frames without this
condition need a weaker axiom 4′ : �ϕ→ �(�� → �ϕ) which corresponds
to the following condition of partly restricted transitivity:

transitivity’ ∀w1,w2∈W−Q∀w3∈W(Rw1w2 ∧Rw2w3 → Rw1w3)

So for further considerations we reserve the following regular logics hav-
ing adequate characterization in terms of augmented frames satisfying re-
spective conditions: R, RD (Fitting’s CD, Lemmon’s D2), RT (Fitting’s
CT, Lemmon’s E2), R4 (Fitting’s CN4, Lemmon’s D4), RD4 (Fitting’s
CND4, Lemmon’s D4), RT4 (Fitting’s CNS4, Lemmon’s E4).

5.4.5 Weak Logics

Neither congruent nor monotonic logics are, in general, determined by
Kripke frames. Fortunately, they are determined by neighborhood frames,
a kind of more general relational semantics.

Definition 5.11 (Neighborhood Frame) Let F = 〈W,N〉 be a neigh-
borhood frame where W �= ∅ is the set of states (possible worlds), and N is
a function N : W −→ P(P(W)). A model on the frame F is any structure
M = 〈F, V 〉, where V is a valuation function on atoms (V : AT −→ P(W)).

Satisfaction of a formula in a state of a model is defined as in Kripke
models with the exception of modals that are evaluated as follows:

M, w � �ϕ iff ‖ϕ‖ ∈ N (w)
M, w � ♦ϕ iff −‖ϕ‖ /∈ N (w)

All semantic notions from preceding sections apply without changes to
neighborhood frames so we pay attention only to questions characteristic
for the most important congruent and monotonic logics. Let M denote the
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set of neighborhood frames (or shortly M-frames) satisfying the following
monotonicity condition:

(m) if X ∈ N (w) and X ⊆ Y , then Y ∈ N (w), for any X,Y ⊆ W

The following determination result holds:

Theorem 5.4 (Adequacy)

• ϕ ∈ E iff it is valid on all neighborhood frames

• ϕ ∈ M iff it is M-valid

We will consider also extensions of E and M obtained by the addition of
axioms D,T, 4, B and 5 – the class of basic congruent and monotonic log-
ics. Any extension of E or M by some axioms X,Y, ..., Z will be denoted as
EXY...Z (MXY...Z respectively). Moreover, we will consider all strength-
enings of these logics additionally closed under (RG) (or equivalently with
N added as an axiom). It is reasonable, because without K, the addition
of (RG) does not change them into normal logics which is the case in the
class of regular logics. These extensions will be called EN-logics (MN-logics
respectively). Any logic containing D will be called D-logic, containing T –
T-logic and so on.

The following conditions on neighbourhood frames correspond to respec-
tive axioms and (RG):

(d) if X ∈ N (w), then −X /∈ N (w)
(t) if X ∈ N (w), then w ∈ X
(4) if X ∈ N (w), then {w′ : X ∈ N (w′)} ∈ N (w)
(b) if w ∈ X, then {w′ : −X /∈ N (w′)} ∈ N (w)
(5) if X /∈ N (w), then {w′ : X /∈ N (w′)} ∈ N (w)
(n) W ∈ N (w)

The following determination result holds for all logics under considera-
tion (cf. [69]):

Theorem 5.5 (Adequacy)

• ϕ ∈ EXY..Z iff it is valid on all neighborhood frames satisfying con-
ditions (x), (y), ..., (z)

• ϕ ∈ MXY..Z iff it is valid on all M-frames satisfying conditions
(x), (y), ..., (z)
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5.4.6 Entailment

The concept of an entailment (consequence relation) may be defined in at
least two17 nonequivalent ways:

1. ϕ follows locally in F from Γ:

• Γ |=F ϕ iff ∀M∈MOD(F)(‖Γ‖M ⊆ ‖ϕ‖M)

(or ∀M∈MOD(F),∀w∈WM
(if M, w � Γ, then M, w � ϕ))

2. ϕ follows globally in F from Γ:

• Γ ||=F ϕ iff ModF (Γ) ⊆ModF (ϕ)

(or ∀M∈MOD(F) (if M � Γ, then M � ϕ))

Note the following:

Lemma 5.3

1. if Γ |=F ϕ, then Γ ||=F ϕ

2. Γ ||=F ϕ iff �nΓ |=F ϕ, where �nΓ = {�nϕ : ϕ ∈ Γ}

3. Γ |=F ϕ iff Γ ∪ {¬ϕ} is F-unsatisfiable.

In what follows we will be rather concerned with local consequence re-
lation because of the reasons mentioned already in Section 5.3.1.

The rules of axiomatic systems (primitive or secondary) may be divided
from the semantic point of view on two groups:

• Γ / ϕ is F-normal iff Γ |=F ϕ

• Γ / ϕ is F-valid iff |=F Γ implies |=F ϕ

Note that in the set of primitve rules used in Section 5.3. for axiom-
atization of modal logics only (MP ) is normal (and hence also valid) rule
in every logic we consider; remaining ones are in general only valid rules.
This semantic characterization of rules gives a useful semantic criterion for
admissibility of rules, namely:

17We omit frame consequence relation which is not recursively characterizable cf. e.g.
[93].
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Lemma 5.4 Γ / ϕ is L-admissible, if L is determined by some F and
Γ / ϕ is F-valid.

This result applies also to admissibility of proof construction rules in
ND systems with respect to F-normality preserving rules (the notion of F-
validity may be seen as a special instance, sufficient for H-systems, of the
more general notion of F-normality preservation).

5.5 Completeness, Decidability and Complexity

We have already mentioned that stronger logics (in the semantic sense) are
modeled by classes of frames where relation of accessibility satisfies some
conditions. It was a great success of relational semantics that many well
known (in axiomatic sense) modal logics like Feys’ T or Lewis’ S4 and
S5 obtained simple semantic characterizations. The link between syntactic
formalizations of L and classes of frames F is obtained via soundness and
completeness theorems of the form:

• (Soundness) if Γ �L ϕ, then Γ |=F ϕ

• (Completeness) if Γ |=F ϕ, then Γ �L ϕ

The last one is often formulated equivalently:

• if Γ is L-consistent, then Γ is F-satisfiable

If the first theorem holds, then L is sound with respect to F , if the second
holds, then L is (strongly) complete with respect to F . If L is adequate
(i.e. both sound and complete) with respect to F , then F characterizes L
or L is determined by F .

Note that if Γ is empty (in the first formulation) or finite, we have a
weak completeness, otherwise we have a strong form (i.e. admitting infinite
Γ). There are modal logics which are weakly complete, but not strongly
complete, with respect to some class of frames.

Standard proofs of completeness for modal logics apply well known con-
struction of a canonical model which is based on Henkin/Lindenbaum result
concerning maximalization of consistent sets. As a result we obtain a unique
infinite model belonging to MOD(L) that falsifies every formula unprov-
able in L. For questions of decidability and automated theorem proving it
is more important that for many logics under consideration there are con-
structive methods of proving completeness. They show how to find for any
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unprovable formula some finite falsifying model. In particular, for many
normal logics we obtain special falsifying models based on rooted frames in
the sense specified below.

Definition 5.12 (Rooted Frames) A frame F = 〈 W, {Ri}〉 is rooted if
there is w0 ∈ W, such that W = {w : R+w0w}, where R =

⋃
{Ri}; a

model based on such frame is called rooted model.

Let us recall that R+ denotes transitive closure of R. Such a frame is
generated by w0 with the help of R+. We will be dealing almost always
with falsifying models of this sort. Moreover, for many logics frames of such
models are in fact trees or they turn into trees if we take as nodes not single
points but their clusters.

Definition 5.13 (Cluster) Let F = 〈W,R〉 be any transitive frame, a
cluster C is a maximal subset of W, such that R is universal relation in it.
A cluster is degenerate if it contains only one point w, such that ¬Rww (w
is irreflexive).

A nondegenerate cluster is simple if it contains only one point w, such
that Rww (w is a reflexive point), otherwise it is proper (contains at least
two different points).

In the following definition we do not assume that R is transitive:

Definition 5.14 (Parachute) A pair consisting of a degenerate cluster
{w0} and a nondegenerate cluster C, such that some elements of C are R-
accessible from w0 is called a parachute; if all elements of C are R-accessible
from w0, then it is a complete parachute.

Note that if R is transitive, then a parachute must be complete.

The following table displays completeness results for the most important
monomodal normal logics. The middle column contains results obtainable
by canonical model method; so there are results that may be read off from
the table in Section 5.4.3. The right column gives determination results in
terms of finite frames. Detailed data concerning sources may be found in
Goré [116]; a characterization of euclidean but not transitive logics comes
from Kracht [166]. We do not display results for temporal logics, since they
are, in principle, the same as for monomodal logics. The reader interested
in details should consult e.g. Burgess [60] or Goldblatt [112].
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L L-frames Finite L-frames
K Any Intransitive and irreflexive trees
D Serial Intransitive trees with reflexive leafs
T Reflexive Intransitive and reflexive trees
K4 Transitive Trees of finite clusters
KB Symmetric Degenerated or simple clusters, or

intransitive symmetric trees
K5 Euclidean Single finite clusters or parachutes
KD5 Serial and euclidean Single finite nondegenerate clusters

or parachutes
KDB Serial and symmetric Simple clusters or intransitive

symmetric trees
B Reflexive and symmetric Symmetric trees of reflexive points
K4B Transitive and symmetric Single finite clusters
K4D Transitive and serial Trees of finite clusters with

nondegenerate clusters as leafs
K45 Transitive and euclidean Single finite clusters or complete parachutes
KD45 Serial, transitive Single finite nondegenerate

and euclidean clusters or complete parachutes
S4 Reflexive and transitive Trees of finite nondegenerate clusters
S5 Equivalential Single, finite, nondegenerate clusters
K4.3 Transitive and Sequences of finite clusters

weakly connected
S4.3 Transitive, reflexive Sequences of finite nondegenerate clusters

and connected

All modal propositional logics considered in this book are decidable.
It is implied by the fact that they satisfy finite model property and are
axiomatizable in finite way (a profound result due to Segerberg [246]).

Clearly, being decidable does not mean being tractable or practically
solvable. Even in CPL one may define quite simple formulae which would
be tested by millennia. In pioneering era of investigation on decidability of
mathematical theories it was sufficient to prove that the theory is decidable
(or not). Since 70s the theory of complexity has grown up from computabil-
ity theory, and many results were established for modal logics as well. We
are not going to pursue in this book problems of computational complexity
since this is not the subject of our study. But ocasionaly we will make some
remarks concerning bahaviour of some (classes of) logics, e.g. in Chapter 11.
So, for the reader’s convenience we recall the most basic notions and facts.
One may find a good introduction to the subject, as well as concrete results
concerning modal logics, in [35] or in [67], where more advanced references
are also displayed.
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First, we recall the basic complexity hierarchy for easy reference:

P ≤ NP ≤ PSPACE ≤ EXPTIME

where:

• P is the class of polynomial problems, trated as practically solv-
able since, for any input, known deterministic algoritms work in time
bounded by some polynomial of the size of an input.

• NP is the class of nondeterministic polynomial problems, i.e. there are
known polynomial solutions but with indeterministic choice involved.

• PSPACE is the class of problems solvable by deterministic algorithms
in polynomial space of the size of an input.

• EXPTIME is the class of problems solvable by deterministic algo-
rithms in exponential time of the size of an input.

All that we know for sure is that P �= EXPTIME but it is strongly be-
lieved that all these classes of problems are indeed different. Problems
which belong to some class C and to which all other problems in this class
are polynomially reducible (i.e. there are p-simulated; cf. Section 1.2) are
C-complete. Moreover, in case of classes of problems solvable by nondeter-
ministic algorithms it makes sense to consider also the class of complemen-
tary problems, since it is not known if they have the same level of com-
plexity. Strictly speaking this applies only to time-nondeterminism since it
was demonstrated by Savitch that PSPACE = NPSPACE, hence, we in-
troduce only the class coNP of problems that are complementary to those
in NP . In case of any deterministic class C it holds that C = coC. In
particular, we do not know whether validity problem and complementary
sat-problem (cf. Chapter 1) represent the same level of complexity if we
know that one of them belongs to NP (or to coNP ).

For our considerations we need only these classes of problems since con-
sidered modal logics do not belong to other classes. In particular:

• decidability (i.e. validity problem) of CPL, S5, KD45, K4.3, Kt4.3
and S4.3 is coNP -complete (their sat-problem is NP -complete).

• logics between K and S4 are PSPACE-complete
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These results are due to Ladner, Ono, Nakamura, Hemaspaandra and oth-
ers (cf. detailed notes in [35]). One should note that complexity of decision
problem for local entailment in modal logics is the same as for validity but
for global entailment it belongs to higher level class. For example, if valid-
ity is decidable for L in PSPACE, then decidability of global entailment
is EXPTIME. Multimodal homogeneous logics like K and S4 with no
interactive axioms are as complex as suitable monomodal logics, but in case
of at least bimodal S5 we also obtain PSPACE-completeness (the result
due to Halpern and Moses). In case of interactive logics the complexity is
usually higher.

One should note that in the sequel (cf. Chapters 9 and 10) we will be
dealing with practical ways of establishing decidability via terminating algo-
rithms of proof search. They tend to behave computationally worse than it
is admitted by known bounds recorded above. For example, tableau systems
for euclidean or linear logics are based on systems for K and accordingly
algorithms for proof search in these logics are not better than for K. But
even in case of K and other PSPACE-complete logics algorithms we will
be dealing with are more complex and, in consequence, decision procedures
for these logics are practically harder (i.e. exponential in the length of an
input) than they might be. It follows from the fact that obtained sets of
formulae provide complete descriptions of falsifying models.

5.6 First-Order Modal Logics

Propositional modal logics may be lifted to first-order languages in many
nonequivalent ways. Garson [103] offers a detailed exposition of several
approaches with discussion of their virtues and limitations. We will follow
his conventions with respect to names of different variants of logics. Before
we introduce concrete axiomatic systems and their semantics it is convenient
to recall briefly some features that stand beyond different formalizations. It
may help to make a choice of which logic best fits to our purposes. For more
detailed treatment one should consult e.g. [103, 96].

5.6.1 Introductory Remarks

Below we point out only the most important factors that should be con-
sidered before we decide which variant of first-order modal logic (shortly
QML) is the best for our needs. One should consider e.g.:

1. whether in different worlds there are the same objects or no
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2. if the same, then we should ask if they must be in every world (do we
have in every world the same domain?)

3. whether every name should have the same designate in every world or
not

4. should every name have a designate in every world?

5. should a designate of a name be an object?

Let us examine the most popular choices. As for the first question there are
basically two approaches:

• David Lewis [176] is the most famous advocate of so called modal
realism. In this approach every world has a separate domain of objects.
In order to talk about possible courses of action of some agent we must
introduce the theory of counterparts. Lewis’ theory is not commonly
accepted and caused many objections concerning its strong ontological
commitments and the lack of intuitiveness. For our aim the most
important is that there are serious technical problems with adequate
formalization of counterpart relation.

• More popular solution is to admit that the same objects may occur in
different worlds. It seems to be more intuitive and certainly technically
simpler in construction of adequate semantics.

The second question has a quite natural reflection in the construction of
models; we may choose between:

• Models with constant domain – the same objects in different worlds
but with different properties. This solution is technically simpler, in
particular we may use CQL as a basis for modal logic. The problem is
that traditional interpretation of quantifiers (existential import) gives
nonintuitive results. A possible solution lies in the application of pos-
sibilistic reading of quantifiers (cf. Chapter 1).

• Models with varying domains – domains of different worlds need not be
the same; every world has its own domain of objects existing in them
(actualism).18 This solution is more intuitive and keeps traditional

18By the way it is the only acceptable solution if we want to provide semantics for
Lewis’ approach – in fact it must be strengthened to the effect that the intersection of
two different domains is empty.
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interpretation of quantifiers but it is difficult to base on CQL. Either
we should modify semantics or put restrictions on the language; both
approaches are rather artificial. So it is more natural, particularly if
we have individual names in a language, to admit FQL as a basis.

As for the third question we have also two choices:

• Rigid denotation – every name has the same designate in every world.
This solution is technically simpler but not very intuitive; in particular
it leads to serious difficulties with proper treatment of identity and
definite descriptions. Saul Kripke [171] is well known advocate of this
solution, at least with respect to individual names and general names
for natural kinds.

• Nonrigid denotation – a name may have different designates in differ-
ent worlds. This solution seems to be more intuitive but technically
more complicated since even rules of FQL fail in such logics. However,
Garsons [105] shows that we may overcome some difficulties if we have
two sorts of names in a language (some rigid and some nonrigid).

The fourth point may lead to proper treatment of empty names (e.g. fic-
tional objects) and assumes distinction between existence of an object in a
world and designate of a name in that world. As Fitting and Mendelsohn
pointed out in [96] these questions are often mistakenly identified.

Finally the fifth question concerns the status of designates of terms:

• Simple forms of semantics like truth value semantics based on substi-
tution interpretation19 just eliminate this problem by dispensing with
domain of objects and reducing evaluation to atomic sentences. This
approach is really simple and may serve as an excellent point of start
in didactics of modal logics, but has some important limitations.

• The most popular approach is based on objectual interpretation. It is
natural and intuitive in many cases but sometimes may generate tech-
nical problems following from the difference between interpretation of
nonrigid terms and the domain of quantification.

• Intensional interpretation changes the perspective. Instead of objects
(extensions) we take as designates of terms their intensions i.e. func-
tions from the set of worlds into domain of objects. This approach

19cf. [105].



170 CHAPTER 5. SURVEY OF MODAL LOGICS

was convincingly advocated by Garson in [104] as the basic form of
semantics. It has some intuitive motivation for some interpretation of
modalities. For example in temporal setting it may be appealing to
take temporally changing objects as sequences of time-slices. Even if in
some interpretations (or some kinds of terms) operating on intensions
may seem unintuitive, we can easily restore objectual interpretation
by taking only constant functions from W into D under consideration.
For our aims it is important that intensional interpretation provides
an adequate semantics for syntactically simple systems of QML.

5.6.2 Identity

The introduction of identity makes a room for further problems and possible
choices. We may divide the stage for philosophical and technical problems,
but in fact they are hardly separable. The leading philosophical problem is
that of a transworld identity. It concerns the criteria of identity of objects
in different worlds. The problem is not really new, only the language of
discussion is different.20

Again, from the standpoint of Lewis’ modal realism, it does not even
make sense of talking about transworld identity. Objects in different worlds
are really different and we have rather a problem of criteria od similarity.
But for these researchers who are not as radical as Lewis the problem is
important. How do we identify the same object in different worlds or time
points? What is responsible for believing that we deal with the very same
object in different contexts despite possible differences? Is that something
like individual essence or form (e.g. Duns Scotus’ haecceitas) which guaran-
tees sameness? One of the reasonable answer is provided by Kripke account
of individual names as rigid designators. It does not make sense to consider
how do we recognize the same object in different worlds since the object is
already identified by name. Her identity is not a theme for discussion but
something which is assumed in advance.

The most important technical problem is connected with apparent in-
adequacy of rules and axioms of identity theory in intensional contexts.
Famous examples of morning/evening star due to Frege, or the number of
planets due to Quine were devised to show that. Let us recall the last one:
The number of planets is 9. Nine is necessarily greater than 7. So, the

20Probably the first formulation is the famous Plutarchus’ story of Theseus’ boat where,
through the centuries, every piece of wood and metal was replaced with a new one by
grateful Athenians.
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number of planets is necessarily greater than 7. Although this argument
seems to be invalid it may be stated as an example of correct application of
Leibniz’s Law LL:

a = 9, �(9 > 7) |= �(a > 7) (5.9)

It is possible to avoid the problem by modification of a translation or
by modification of logic of identity. In the first approach different strategies
are applied.

One may possibly treat complex names from the example as not genuine
terms. The Russelian method of description elimination will work in this
case. But one may provide similar examples with individual names. Clearly,
also in this cases we may proceed as if they are instances of (hidden) de-
scriptions. But we have already discussed (in Chapter 1) disadvantages of
such an approach.

Perhaps modified translation of modal phrases may lead to more natural
solution. We enter here a famous problem of distinction between the two
interpretations of modal functors: de dicto and de re. Traditionally it was
conceived as a question whether modal operator applies to a sentence or to a
thing described in modal sentence. In modern terms (not necessarily equiv-
alent to traditional) it is stated as a distinction between modal operators
occurring outside the scope of quantifiers and inside (thus having formulae
with free variables in the scope of modal constant). It may be illustrated by
simple example taken from [96]; a sentence “Something necessarily exists” is
ambiguous since we may understand it and express it in two different ways:

• de dicto — �∃xEx

• de re — ∃x�Ex

Now, the first is a tautology in modal logic of nonempty domains, as we will
see soon, whereas the second is a rather controversial claim on the existence
of necessary being. It is easy to observe that if the conclusion of Quine
argument is interpreted as de re statement – ∃x(x = a ∧ �(x > 7)) – we
have still an example of correct reasoning but the conclusion does not seem
to be false. In general, to resolve problems based essentially on scoping
difficulties, we need much more elaborate machinery (cf. an application of
lambda operator in [96]) but in this case even such simple solution works.

Of course Quine would be unconvinced by such a response since he
was well known opponent of using de re modalities. According to Quine,
even using them is a manifestation of some form of essentialism. But it is
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mistaken view.21 Leaving the question of essentialism as a viable theory
aside we should say that using de re modalities is at most a form of talking
about necessary properties of objects, not of claiming that there are any.
Even philosophers with minimalistic and reductionistic program should pre-
fer formal tools that do not just eliminate some unquestionable linguistic
phenomena. So it is rather an advantage of modal first-order language that
we may express in it several philosophical positions in a neutral way.

But distinction between de re/de dicto modalities is not a solution of
all problems. Perhaps some modification of the logic of identity is needed.
If we apply (unrestricted) Leibniz’s Law in modal first-order logic we may
easily prove for any terms τ1, τ2 the thesis:

LI τ1 = τ2 → �(τ1 = τ2)

It leads to elimination of contingent identities which seems to be counter-
intuitive. Is it really necessary that Lech Kaczyński is the present president
of Poland? Different reactions are possible to that problem. One of the most
popular is to accept this thesis but to understand it properly. This solution
is the consequence of Kripke’s theory of rigid designators mentioned above.
If two names apply to the same object it must be necessary because the de-
notation is rigid. But even Kripke himself restricts his theory to individual
names (and general names of natural kinds), so if we deal with other kinds
of names and do not want to eliminate them, LI is too strong.

[96] makes a distinction between the Leibniz’s Law, or its strengthened
form called Principle of Indiscernibility of Identicals, and Principle of Sub-
stitution. The latter claims that if two terms τ1, τ2 have the same designate,
then any pair of sentences ϕ, ϕ[τ1//τ2], where the second is a result of re-
placement, have the same value. The source of problematic arguments is the
use of Substitution principle, which is simply false. On the other hand, LL
is restricted to variables only and as such is rather uncontroversial. x = y
means that the same object is a value of both variables (under some assign-
ment). LI is still provable on this basis, but only with variables in places
of τi (i ∈ {1, 2}).

We may weaken LL in different way by restricting ϕ to atoms. This
is the solution of Garson [105] which we follow in this book either. One
advantage of this approach is that we do not loose anything in classical
logic; full version of LL is easily proved by induction on the length of ϕ.

21The literature on these questions is enormous; one may consult [96] for readable
account.
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On the other hand in modal first-order logic neither full version of LL,
nor theses like LI are provable. If we admit some terms as rigid we may
stipulate LI as additional axiom for that category of names. Note that
this simple syntactic solution must have its counterpart in semantics – an
interpretation allowing nonrigid terms.

5.6.3 Semantics

Relational semantics for first-order modal logic is generally obtained by com-
bining first-order models with modal frames but, due to a number of possible
choices mentioned above, it takes several forms. Moreover, it’s not the case
that every propositional modal logic combined with every quantificational
approach yields complete formalization. For the sake of simplicity we as-
sume that we deal here only with monomodal normal logics, although it is
worth mentioning that [14] contains interesting results on QML character-
ized by neighborhood semantics. In the class of normal logics we generally
assume that L is any logic characterized semantically by classes of frames
defined with universal implications; general strategies of completeness proof
applied by Garson [104] fail for logics like S4.2 where existential quantifier
is involved in the condition for R. Note that it applies also to seriality,
but in this case the difficulty may be overcome, so all basic normal logics
are covered by the formalizations to follow. Interesting remarks on special
cases of incomplete first-order modal logics may be found in [136]. Also for
simplicity we state our formulation of variants of semantics directly in terms
of models and we do not state exactly all first-order counterparts of several
semantic notions of (global, local) satisfiability, entailment e.t.c. introduced
previously in a detailed way for propositional logics. A careful reader may
redefine all of them on the basis of simplified characterisation given below.

Now we briefly introduce a family of models for several versions of QML.
Let us start with the simplest version – models with the possibilist (con-
stant) domain and rigid denotation (shortly PR-models).

Definition 5.15 (PR-Model) A possibilist rigid model is a structure M =
〈W,R, D, V 〉, where W,R is a standard modal frame, D is a nonempty do-
main, and V is an interpretation of nonlogical terms, defined as follows:

• V (c) ∈ D, for every (rigid) individual constant

• V (An) ⊆ Dn ×W, for every n-argument predicate
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An assignment a is defined in a standard way as a : V AR −→ D,
similarly for the notion of x-variant.

Interpretation I of a term τ in a model and under an assignment is
characterized as in classical models:

I(τ) :=

{
a(τ) if τ ∈ V AR

V (τ) if τ ∈ CON

Satisfiability of a formula in a world of a model and under an assignment
is defined as follows:

M, a, w � Pn(τ1, ..., τn) iff 〈I(τ1), ..., I(τn), w〉 ∈ V (Pn)
M, a, w � ¬ϕ iff M, a � ϕ
M, a, w � ϕ ∧ ψ iff M, a � ϕ and M, a � ψ
M, a, w � ϕ ∨ ψ iff M, a � ϕ or M, a � ψ
M, a, w � ϕ→ ψ iff M, a � ϕ or M, a � ψ
M, a, w � �ϕ iff M, w′ � ϕ for any w′ such that Rww′

M, a, w � ♦ϕ iff M, w′ � ϕ for some w′ such that Rww′

M, a, w � τ1 = τ2 iff I(τ1) = I(τ2)
M, a, w � ∀xϕ iff M, axo � ϕ for all o ∈ D
M, a, w � ∃xϕ iff M, axo � ϕ for some o ∈ D

One may easily note that all clauses except the first are identical to
classical and modal ones; only the point of reference is doubled (w and
a). The only significant difference is in the first clause, where n-argument
predicate is explained in terms of n+ 1 tuples. But this is only a technical
trick which allows V to be defined in a simple way in rigid models.

Note that in defining first-order counterparts of several semantic notions
of (global, local) satisfiability, entailment we must take into account also the
presence of an assignment in valuation clauses. This, in general, may lead
to a great proliferation of semantic notions, some of them having no real
importance, at least for our aims. So let us display only the most important:

• ϕ is true at w in M (M, w � ϕ) iff M, a, w � ϕ for all a

• Γ is satisfiable in a model M iff M, a, w � Γ for some w and a;

• Γ is L-satisfiable iff, there is L-model, where it is satisfiable

The first notion is a first-order analogue of satisfiability at a world in a model
with no reference to an assignment. In fact if we restrict considerations to
sentences it really doesn’t matter which assignment we choose and the two
notions (w � ϕ and a,w � ϕ) coincide.
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The concept of global satisfiability (or validity in a model) is now defined
as in Section 5.4.1:

• M � ϕ iff M, w � ϕ for all w

All other notions of validity (in a frame, class of models/frames) go with-
out changes by reference to this concept. Local entailment may be simply
defined in terms of L-satisfiability.

• Γ |=L ϕ iff Γ ∪ {¬ϕ} is L-unsatisfiable

Models with actualist (varying) domains and rigid denotation (AR-models)
are defined as follows:

Definition 5.16 (AR-Model) An actualist rigid model is a structure M =
〈W,R, D, d, V 〉, where d : W −→ P(D) is a function which assigns to every
world a set of objects.

All other components of a model, as well as the notion of I and a, are
defined as for PR-models. But we need here also for some versions of logics
a notion of w-assignment a, where a codomain is restricted to d(w).

The concept of satisfiability is defined by the same clauses, except the
cases of quantifiers which read:

M, a, w � ∀xϕ iff M, axo � ϕ for all o ∈ d(w)
M, a, w � ∃xϕ iff M, axo � ϕ for some o ∈ d(w)

Informally d(w) may be interpreted as the set of objects existing in w,
whereas D−d(w) is the set of possible (nonexistent in w) objects. Although
individual constants may name nonexistent objects, quantifiers have exis-
tential import. Because of that connotation, but also because of technical
conveniency, we define in AR-models also a clause for existence predicate
E.

M, a, w � Eτ iff I(τ) ∈ d(w)

Note that one may introduce also possibilistic quantifiers (using e.g.
Tarskian symbols

∧
,
∨

for that purpose) defined by clauses from PR-models
(i.e. by reference to all D).

Typically various conditions are considered on AR-models; we list here
only three:
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• (EX): d(w) may be required nonempty for every w

• (MON): d is R-monotonic (expanding domains): Rww′ implies d(w) ⊆
d(w′)

• (AMON): d is R-antymonotonic (contracting domains): Rww′ implies
d(w′) ⊆ d(w)

The notion of ϕ being true at w should be weakened a bit. Instead of all
assignments we take under consideration only w-assignments (i.e. having
value in d(w) only). The definition reads:

M, w � ϕ iff M, a, w � ϕ for all w-assignments a

Note that in consequence it leads to informal understanding of valid
formulae not as universally true but rather as never false. Such weakening
is necessary if we want to keep CQL as a basis.

Resignation from rigid denotation of (some) terms leads to more funda-
mental modification. Let AN-model be any actualist nonrigid model defined
as follows:

Definition 5.17 (AN-Model) An actualist nonrigid model is a structure
M = 〈W,R, D, d, V 〉, where V is an interpretation of nonlogical terms in
worlds, defined as follows:

• Vw(c) ∈ D, for every individual constant and world

• Vw(Pn) ⊆ Dn, for every n-argument predicate and world

All other components and the notion of an assignment are kept intact but
interpretation I of a term τ under an assignment is also relativized to worlds
in a model and defined accordingly:

Iw(τ) :=

{
a(τ) if τ ∈ V AR

Vw(τ) if τ ∈ CON

In the definition of satisfaction we must make the following adjustments:

M, a, w � Pn(τ1, ..., τn) iff 〈Iw(τ1), ..., Iw(τn)〉 ∈ Vw(Pn)
M, a, w � τ1 = τ2 iff Iw(τ1) = Iw(τ2)
M, a, w � Eτ iff Iw(τ) ∈ d(w)
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Note the main difference: in rigid models we deal with extensions of
terms, whereas in nonrigid we deal with intensions as well. So Vw or Iw
picks up an extension of an expression in a world, whereas V or I simpliciter
is an intension i.e. a function from W into the set of extensions. In fact one
may define all types of models in a uniform way, having richer structures
just from the beginning and obtaining suitable classes with the help of
additional conditions. Thus, PR-model may be redefined as AN-model,
where d(w) = D and Vw(c) = Vw′(c) for every w,w′ and c. We prefer to
complicate models when we move from simpler to more complex logic.

Notions of satisfiability, validity, entailment e.t.c. go without changes
from preceding semantics.

Finally one may resign from objectual interpretation in favor of inten-
sions (individual concepts) i.e. the set In of all functions f from W into D.
This way difficulties may be overcome which follow from the fact that (non-
rigid) terms refer to intensions whereas quantifiers refer to extensions. In
order to avoid some technical problems a subset S of all possible intensions
In is chosen which is assumed to cover substances. The simplest semantics
of this kind is considered in Garson [105].

Let IN-model be any intensional nonrigid model defined below:

Definition 5.18 (IN-Model) An intensional nonrigid model is a struc-
ture M = 〈W,R, D, d, S, V 〉, where S ⊆ In is a nonempty subset of sub-
stances defined as above. The notion of V and I are like for AN-models,
but definition of an assignment is changed: a : V AR −→ S. So a(x) is now
understood as some f : W −→ D not as an object from D.

In the definition of satisfaction we must change only clauses for quanti-
fiers:

M, a, w � ∀xϕ iff M, axf � ϕ for all f ∈ S such that f(w) ∈ d(w)
M, a, w � ∃xϕ iff M, axf � ϕ for some f ∈ S such that f(w) ∈ d(w)

IN-models may be seen as corresponding to possibilistic models in hav-
ing one set of substances for the whole model. In Garson [103] a version
of intensional semantics is introduced which is like actualist semantics in
having suitable sets of substances for every world. Let AIN-model be any
such actualist intensional nonrigid model defined as follows:

Definition 5.19 (AIN-Model) An actualist intensional nonrigid model
is a structure M = 〈W,R, D, d, s, V 〉, where for every w, s(w) ⊆ In is a
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nonempty subset of substances from the world w. The notion of V, I and a
are like for IN-models.

But in the definition of satisfaction we must change not only clauses for
quantifiers; E is needed as an intensional predicate identifying substances
from considered world:

M, a, w � ∀xϕ iff M, axf � ϕ for all f ∈ s(w)
M, a, w � ∃xϕ iff M, axf � ϕ for some f ∈ s(w)
M, a, w � Eτ iff I(τ) ∈ s(w)

Note that in the last clause instead of Iw, i.e. an extension of τ in w,
we take its intension, i.e. a function from W into D.

The most general variant of intensional semantics, which serves as a basis
for unification of other approaches, is considered in Garson [104]. We will
call it FIN-model for full intensional nonrigid model, and define as follows:

Definition 5.20 (FIN-Model) A full intensional nonrigid model is a struc-
ture M = 〈W,R, D, d, S, s, V 〉, where S ⊆ In is a general set of substances,
whereas s(w) ⊆ In is world-relative set of substances for every w (and in
general it is not required that s(w) ⊆ S). The notion of V, I and a are like
for AIN-models.

In the definition of satisfaction we must change only the clauses for
quantifiers:

M, a, w � ∀xϕ iff M, axf � ϕ for all f ∈ In such that f ∈ s(w)
M, a, w � ∃xϕ iff M, axf � ϕ for some f ∈ In such that f ∈ s(w)

5.6.4 Some Logics

A lot of interesting logics may be characterized with the help of classes of
models described above. We revue below their axiomatic formalizations.
Again we proceed from the simplest to more complex.

Syntactically the simplest solution is just to take H-CQL and add suit-
able modal axioms and rules. This way we obtain H-QPL-L, where L is
a modal logic under consideration. Surprisingly enough this simplest logic
is not characterized by the simplest semantics. It is adequate with respect
to the class of AR-models satisfying monotonicity condition (MON). An
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addition of identity to QPL requires additional axioms except ID and re-
stricted LL, namely:

LI τ1 = τ2 → �(τ1 = τ2)
LNI τ1 �= τ2 → �(τ1 �= τ2)

They express rigidity of terms; we have already noted this with respect
to LI, but LNI is also valid. Note that even if we strengthen LL to admit
any ϕ, not just atoms, it is incomplete since LNI is not provable. Instead
of LNI one may use:

MI ♦(τ1 = τ2) → τ1 = τ2

Q1-L is a class of logics characterized by PR-models for L. H-Q1-L is
obtained in general by addition of Barcan Formula BF to H-QPL-L:

BF ∀x�ϕ→ �∀xϕ

Note that in cases, where L is characterized by symmetric frames, BF is
provable with the help of B. It means that for symmetric L, QPL-L=Q1-
L. It is a consequence of the fact that BF corresponds to (AMON), and
this condition together with (MON) yields the same domain for all worlds
related by transitive closure of R. In rooted frames we have just models
with constant domain, and they are sufficient for determination of QPL.
By the way, a formula-schema which corresponds to (MON) is a converse
of Barcan Formula:

CBF �∀xϕ→ ∀x�ϕ

It is not necessary to add it to axiomatic base of QPL because it is
provable already in H-QPL-K. Extension to identity is the same as in QPL.

If we change CQL on FQL as quantificational basis we obtain other classes
of logics which we list in order of increasing syntactical complexity.

The simplest solution QS-L is obtained by a combination of H-FQL
with H-L. Logics of this kind are determined by L-classes of AIN-models.
Since terms are in general nonrigid a proper treatment of identity requires
only ID and restricted LL. Note that formulae of the form Eτ are not
treated as atomic, so, for example:

LLE τ1 = τ2 → (Eτ1 → Eτ2)

is not a tautology of AIN-models. But the following rule is validity
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preserving and may be added to axiomatic basis:

(LLE) � τ1 = τ2 / � Eτ1 → Eτ2

The logic G-L which is the weakest system considered in [104] is like QS-L
but both F∀E and F∃I must be restricted: only variables may be values of
τ . These logics are determined by L-classes of FIN-models.

The logic F-L is the weakest system of [105]. It is like G-L but E is
counted as atomic. It means in particular that LLE is provable in this
system as a simple instance of LL. This class of logics is adequate with
respect to IN-models for suitable L.

Q1R-L is a class of logics determined by AR-models for L with no other
restrictions. Without identity it is just like QS-L; an adequate formalization
is obtained by addition of H-L to H-FQL. Extension to identity is as in
QPL-L since all terms are rigid. Also note that in contrast to QS-L (but
like in F-L) formulae of the form Eτ must be counted as atomic.

Interestingly enough if we want to obtain a formalization for logics
of ANR models (i.e. nonrigidity combined with objectual interpretation)
things become more complicated, at least in axiomatic setting. Complica-
tions with suitable quantificational rules for instantiation of nonrigid terms
may be fortunately avoided if we admit also some sort of rigid terms. Gar-
son shows that in such case it is enough to have suitable rules defined for
rigid terms only. Hence these logics, which we call, after Thomason, Q3-L
(in [105] they are called oS but in ND formulation) are formalized as G-L
above, but still to prove completeness one may use generalized rules because
standard axioms and rules of FQL are insufficient. For simplicity we state
them only for ∀:

(G∀E) � ϕ1 → �(ϕ2 → ...�(ϕn → ∀xψ)...)
/ � ϕ1 → �(ϕ2 → ...�(ϕn → (Ey → ψ[x/y])...)

(G∀I) � ϕ1 → �(ϕ2 → ...�(ϕn → (Ex→ ψ(x))...)
/ � ϕ1 → �(ϕ2 → ...�(ϕn → ∀xψ)...)

where x /∈ V F ({ϕ1, ..., ϕn})

Note that (G∀E) is restricted to variables only which are rigid. Clearly
if we have some sort of other rigid terms in a language we may generalize
this rule by admitting them also as possible substitution terms.

For completeness we need also the following rule:
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(G = E) � ϕ1 → �(ϕ2 → ...�(ϕn → x �= τ)...)
/ � ϕ1 → �(ϕ2 → ...�(ϕn → ⊥)...)

where x /∈ V F ({ϕ1, ..., ϕn, τ})

Remark 5.1 In the presentation of various forms of QML we have omitted
some systems known from older literature on the subject, like e.g. Gabbay’s
systems GKc and GKs or Kripke’s logic with no terms. One may find their
description in Garson [103] and their ND formalization in Indrzejczak [139].
♣



Chapter 6

Standard Approach to Basic
Modal Logics

In this Chapter we focus on the class of non-axiomatic systems that are
called standard in the sense of keeping intact all the machinery of suitable
systems for classical logic. Extensions are obtained by means of additional
modal rules. This group covers modal extensions of standard Gentzen SC,
Hintikka-style modal TS,1 and some ND systems.

No doubt systems of this sort are the earliest and the most popular
non-axiomatic formalizations of modal logics in general. In this Chapter we
restrict a presentation to formalizations of basic logics because most of the
proposals are limited only to some logics in this family. Moreover, there
is a straightforward correspondence of results between SC, TS and ND in
standard approaches as far as they are stated as formalizations of basic
logics, so they make a really uniform group. As we shall see in the next
Chapter, this correspondence is sometimes broken when we left a family of
basic logics.

Close resemblance of SC’s and TS’s of this type does not require explana-
tion; in Chapter 3 we already explained that the latter is just an inversion
and simplification of the former in classical logic, and it is true also for
modal extensions. In what way standard ND-systems are related to these
systems will be explained in what follows. For the time being we point out
only one thing; a characteristic property of all these systems is that rules
for modal operators lead to the loss of some information and/or modifica-
tion of the rest. In SC and TS it is connected with putting side-conditions

1We mean the family of TS’s called implicit by Goré [117].
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on parametric formulae. In the most popular modal ND it is connected
with the introduction of a special category of subproofs, where reiteration
of formulae is limited.2

It seems reasonable to start with short presentation of standard SC
systems for basic modal logic first, in Section 6.1. They may be seen as an
easy point of reference, and in fact, they were historically the first forms
of non-axiomatic formalizations of modal logics. Standard TS’s are not
discussed separately but collected together with SC’s.

In case of ND we have a division of ways. There are four basic approaches
to modality via ND-formalization which may be called standard since they
do not alter radically the basic format of ND system for classical logic.
They are based on: modalization of assumptions, modalization of rules,
modalization of reiteration rule, application of modal assumptions. In fact,
the last two may be seen as language-based variants of basically the same
methods: Fitch’s technique of modal (or strict) subderivations, where the
former deals rather with �, whereas the latter is based on ♦. In many
versions, including Fitch original work, these two approaches are indeed
mixed together. They are separated by some authors, e.g. Fitting [93],
because of semantic reasons; we will show one more difference, of syntactic
character. In Sections 6.2, 6.3, and 6.4. we present all these approaches
to modal ND, paying attention to practical matters, especially the scope
of applicability. As a result only Fitch’s approach seems to be reasonably
extensive. The last two sections show how Fitch’s approach to ND may be
extended to weak modal logics, and to first-order modal logics.

6.1 Standard Sequent Calculi and Tableau Sys-
tems

6.1.1 Historical Remarks

It seems that extensions of standard SC to some modal logics were even
earlier than invention of full-fledged semantics, since they were prior to
famous works of Kripke [169], Hintikka [132] and others. The first modal
sequent systems appeared in Feys [85] (for S4), Curry [75, 76] (for S4 and
S5), Ridder [233] (also T) and Kanger [160] (the same logics). However the
most fundamental work in this field was due to Ohnishi and Matsumoto [197,
198], where some weaker logics like S2 and S3 were also formalized. This

2In fact, also a system of destructive resolution of [94] may be included in this group –
it will be introduced later in Chapter 7 (Section 7.4.2).
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line of investigation was then extended by Zeman [288] and Fitting [93] to
many normal and regular logics.3 In variety of later works this approach was
extended to many other regular and normal logics including such important
ones like G and S4Grz. Some of these extensions of standard SC will be
described later in Chapter 7 and 9. More detailed historical remarks may
be found e.g. in [93, 116, 280, 281]. SC systems for logics weaker than
regular were introduced much later by Lavendhomme and Lucas [172], and
by Indrzejczak [152, 154].

Although the first tableau formalizations of some modal logics due to
Kripke were invented in late 50s we will not treat them as standard, and
a discussion of them will be postponed to Chapter 7 because of reasons
which will be explained therein. Tableau systems which are called standard
in this book were devised much later. These are TS’s in Hintikka format,
introduced by Rautenberg [229] and extended by others (cf. Goré [116, 117]
for detailed documentation) to variety of other normal logics.

6.1.2 Standard SC for Basic Modal Logics

As we mentioned above, standard modal SC is obtained just by addition of
extra rules for modals to Gentzen SC for CPL. For example, to obtain a
formalization of K in a language with box only (i.e. L�), it is sufficient to
add only one rule:

(⇒ �) Γ ⇒ ϕ
�Γ ⇒ �ϕ

In case of a language with ♦ we need additionally the following rule:

(♦ ⇒) ϕ⇒ Δ
♦ϕ⇒ ♦Δ

It is worth remarking that although addition of any of these rules to SC
for CPL provides an adequate formalization of K in a language with one
modal constant, the addition of both rules is not sufficient for completeness
of K in full LM. It was already noted by Kripke [170] that such rules are
insufficient for proving interdefinability of � and ♦. In order to remedy the
problem one should rather use the following pair of rules:

(⇒ �′) Γ ⇒ Δ, ϕ
�Γ ⇒ ♦Δ,�ϕ (♦ ⇒′) ϕ,Γ ⇒ Δ

♦ϕ,�Γ ⇒ ♦Δ

3In fact Zeman’s work contains formalizations of the whole Lewis’ family S1–S5.
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The modification of these rules and the addition of others leads to for-
malization of many normal logics. In particular, to obtain T it is enough
to add to the formalization of K the following pair of rules:

(� ⇒) ϕ,Γ ⇒ Δ
�ϕ,Γ ⇒ Δ (⇒ ♦) Γ ⇒ Δ, ϕ

Γ ⇒ Δ,♦ϕ

The formalization of other logics, e.g. transitive, requires usually at
least a modification of rules (⇒ �′) and (♦ ⇒′), taking into account a type
of operations admissible on parametric formulae. For example, in order to
get SC for S4, we add to CPL (⇒ ♦), (� ⇒) and the following variants of
(♦ ⇒′) and (⇒ �′):

(⇒ �4) �Γ ⇒ ♦Δ, ϕ
�Γ ⇒ ♦Δ,�ϕ (♦ ⇒4) ϕ,�Γ ⇒ ♦Δ

♦ϕ,�Γ ⇒ ♦Δ

Since, at least for basic logics, such an approach requires only a suitable
modification of rules (♦ ⇒′) and (⇒ �′), it may be nicely summarized in
the general schemata due to Fitting:

(⇒ �F ) Γ� ⇒ Δ�, ϕ
Γ ⇒ Δ,�ϕ (♦ ⇒F ) ϕ,Γ� ⇒ Δ�

♦ϕ,Γ ⇒ Δ

where Γ� and Δ� are defined accordingly. In the table below we put defini-
tions for 15 basic normal logics. For simpler comparison with other formal-
izations based on similar principles we use general π, ν-notation.

Logic Γ� Δ�

K, D, T {ν : νi ∈ Γ} {π : πi ∈ Δ}
S4 {νi : νi ∈ Γ} {πi : πi ∈ Δ}

K4, D4 {ν : νi ∈ Γ} ∪ {νi : νi ∈ Γ} {π : πi ∈ Δ} ∪ {πi : πi ∈ Δ}
KB, DB, B {ν : νi ∈ Γ} ∪ {πi : π ∈ Γ} {π : πi ∈ Δ} ∪ {νi : ν ∈ Δ}

S5 {νi : νi ∈ Γ} ∪ {πi : πi ∈ Γ} {πi : πi ∈ Δ} ∪ {νi : νi ∈ Δ}
KB4 {ν : νi ∈ Γ} ∪ {νi : νi ∈ Γ} {π : πi ∈ Δ} ∪ {πi : πi ∈ Δ}

∪{πi : π ∈ Γ} ∪{νi : ν ∈ Δ}
K5, KD5 {ν : νi ∈ Γ} ∪ {πi : πi ∈ Γ} {π : πi ∈ Δ} ∪ {νi : νi ∈ Δ}

K45, KD45 {ν : νi ∈ Γ} ∪ {νi : νi ∈ Γ} {π : πi ∈ Δ} ∪ {πi : πi ∈ Δ}
∪{π : πi ∈ Γ} ∪ {πi : πi ∈ Γ} ∪{ν : νi ∈ Δ} ∪ {νi : νi ∈ Δ}

Definitions of Γ� and Δ� above the line are taken from Fitting [93]. These
below the line, are modeled on the rules due to Takano ( for KB4 from [269],
and for K5 and KD5 from [270]) and Schvarts [253] (for K45 and KD45)
with slight modifications however, because in both authors original rules are
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defined in L�. In some cases it is possible to simplify the definition, but we
will illustrate this later when discussing ND system based on the use of the
reiteration rule.

Of course, for every reflexive logic we must add rules (⇒ ♦) and (� ⇒).
In case of serial logics we need one additional rule instead:

(D ⇒) Γ� ⇒ Δ�

Γ ⇒ Δ

The general form of rules introduced by Fitting is more convenient for
compact description of the whole class of basic modal logics. Moreover, it
contains tacit applications of weakening rules, so we can get rid of these
rules from SC introducing generalized form of (AX). Additionally we can
obtain proof-search procedures for those cases that admit cut elimination,
but to save completeness of reflexive logics, we must change a bit (� ⇒)
and (⇒ ♦):

(� ⇒′) �ϕ,ϕ,Γ ⇒ Δ
�ϕ,Γ ⇒ Δ (⇒ ♦′) Γ ⇒ Δ, ϕ,♦ϕ

Γ ⇒ Δ,♦ϕ

As we noted in Chapter 3 such a version of SC easily leads to creation
of Hintikka type TS, just by taking the rules in an upside-down manner. To
our SC rule (⇒ �) for K there corresponds (�E) or (πiE) in generalized
form:

(�E) �Γ,¬�ϕ
Γ,¬ϕ (πiE) Γ, πi

Γ�, π

A pioneer of this approach to modal logics is Rautenberg [229]; a detailed
exposition of this technique applied to many normal logics may be found in
Goré [117]. It may seem strange that we do not mention here the classical
works of Kripke (e.g. [169]) which is much earlier. But the approach of
Kripke is not standard in our sense, because it comprises a standard TS
in Beth format for CPL embedded in the graphical representation of rela-
tional semantics. So it has a slightly different character than the solution
of Rautenberg; it is not purely syntactical but rather semantical or even
hybrid approach (cf. Introduction). That is why we will discuss Kripke
approach in the next Chapter; Also Goré [117] is treating Kripke systems in
this way and put them together with labelled TS under the name explicit
systems.

In order to get SC (or TS) for regular basic logics one may add a side-
condition on the application of the above rules to the effect of nonempty
Γ�. This works only for the small group of logics we have considered
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in Chapter 5; some other regular (and quasi-regular) logics need further
modifications described in [93].

6.1.3 SC for Weak Basic Logics

The case of monotonic and congruent logics is more complicated because we
need a single rule corresponding to every axiom. On the other hand, con-
trary to normal and regular logics, SC presented below is modular. Lavend-
homme and Lucas [172] defined standard SC for E and M; Indrzejczak
[152, 154] presented formalizations for all basic monotonic and congruent
logics. For simplicity we use a language with � only. We need the following
rules:

(E) ϕ⇒ ψ ψ ⇒ ϕ
�ϕ⇒ �ψ (M) ϕ⇒ ψ

�ϕ⇒ �ψ

(D-2) ⇒ ϕ,ψ ϕ, ψ ⇒
�ϕ,�ψ ⇒ (D) ϕ,ψ ⇒

�ϕ,�ψ ⇒

(4-2) �ϕ⇒ ψ ψ ⇒ �ϕ
�ϕ⇒ �ψ (4) �ϕ⇒ ψ

�ϕ⇒ �ψ

(5-2) ⇒ �ϕ,ψ �ϕ,ψ ⇒
⇒ �ϕ,�ψ (5) ⇒ �ϕ,ψ

⇒ �ϕ,�ψ

(B-2) ⇒ �ϕ,ψ �ϕ,ψ ⇒
⇒ ϕ,�ψ (B) ⇒ �ϕ,ψ

⇒ ϕ,�ψ

SC for CPL with cut and weakening yields an adequate formalization of
E after addition of (E), whereas addition of (M) gives us M. The extensions
are obtained in a modular way by addition of the rules with suitable names;
each axiom A (= D, 4, 5, B) corresponds to the rule (A) on the basis of
SC-M, and to the rule (A-2) on the basis of SC-E. It is worth noting that
in contrast to axiomatic formalizations, where we use the same formulae
as axioms, in SC we must use different rules in the context of congruent
logics and in the context of monotonic ones. One can easily check that
characteristic rules in the right column are not sound in neighbourhood
semantics for respective congruent logics. Only T is characterized with the
same rule as in the class of normal and regular logics.

One may obtain additional calculi for other weak logics with the help of
the following rules:

(C-3) ϕ,ψ ⇒ χ χ⇒ ϕ χ⇒ ψ
�ϕ,�ψ ⇒ �χ (N) ⇒ ϕ

⇒ �ϕ
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(N) is simply a sequent formulation of (RG) which allows us to get
formalizations of EN-logics and MN-logics mentioned in the last Chapter.
(C-3) corresponds to axiom C: �ϕ∧�ψ → �(ϕ∧ψ) on the ground of E; it
enables a formalization of the class of EC-logics. The addition of this rule
to calculi for monotonic logics does not make sense since they collapse into
regular ones (K is derivable). In fact, to change SC-M into SC-R we need
much simpler rule (C): ϕ,ψ ⇒ χ / �ϕ,�ψ ⇒ �χ which cannot be used
for congruent logics because it is not sound in EC.

6.2 Some Standard ND for Modal Basic Logics

In contrast to the situation in SC and TS, we may distinguish more than one
ND formalization for modal logics which may be called standard (since the
basic ND system for CPL is not modified). There are four such approaches
to modality via ND-formalization, based on: modalization of assumptions,
modalization of rules, modalization of reiteration rule, application of modal
assumptions. In fact, the last two approaches may be seen as language-
based variants of basically the one method: Fitch’s technique of modal (or
strict) subderivations.

The first two approaches rather fail to be extensive, hence they are
treated briefly in one section in contrast to the last two that have quite a
satisfying scope of application and will be discussed thoroughly.

6.2.1 Modal Assumptions

The first approach to the extension of ND-techniques to modal logics, due
to Curry [75], was based on the concept of modal assumptions. The idea is
that the application of some rule of necessity introduction to a formula ϕ
is dependent on the shape of undischarged assumptions of ϕ. It should be
limited to cases where the set of assumptions is empty or consists only of
somewhat modalized assumptions. In the first case it is simply an applica-
tion of (RG), in the second, we must check all the assumptions whether they
satisfy suitable conditions defined for respective logic. Curry [75] defined
his system only for propositional S4 but this approach was soon, and rather
independently, extended by others. Borkowski and S�lupecki [54] provide a
system for S4 and S5 but in the language with strict implication as prim-
itive. Prawitz [220] formalized the same modal logics but also on minimal
and intuitionistic basis and in first-order language. A similar system for S5
was provided by Corcoran [74].
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The advantage of this approach lies in its independence of the format
of ND system. Both Curry and Prawitz have used Gentzen’s T-F-format,
Borkowski and S�lupecki, as well as Corcoran, have used Jaśkowski’s format4

Despite this format-independence, any variant of Gentzen’s format seems
to be better prepared for this solution because all actual assumptions of
each formula are displayed. In Jaśkowski’s format, a formula may be put
in the scope of assumption on which it is not in fact dependent (cf. in this
respect Section 2.4.3), hence the control over applicability of � introduction
is harder. This inconvenience may also lead to construction of more compli-
cated proofs. This is the reason why, in this section, we will use Gentzen’s
S-system in Suppes’ format for examples.

Modal formulae are defined for S4 as any ν-formulae, and for S5, ad-
ditionally as any π-formulae. Hence we have the following rule of necessity
introduction:

(�IS) Γ ⇒ ϕ / Γ ⇒ �ϕ,

where for S4, Γ consists of ν-formulae only, whereas for S5 it may contain
also π-formulae.

One may easily note that it is just a special case of suitable rule from
SC with Δ empty for respective logics. For both of them we additionally
need:

(�ES) Γ ⇒ �ϕ / Γ ⇒ ϕ

with no constraints on Γ.

The above definition of modalized formulae provides a simple account
of rules but, unfortunately, forces us to construct unnecessarily long and
complicated proofs – there is an example in Suppes’ format on the next
page. The problem illustrated here is not only of practical nature, it has
also some important theoretical aspect which we should describe briefly.
Prawitz [220] has proved normalization theorem for many logics in ND-
formalization. Unfortunately, not all proofs in his systems for S4 and S5
may be transformed into normal form. For example, in displayed proof
maximum formulae are present in lines 10 (12) and 11.

4Corcoran in fact applied horizontal, instead of vertical, manner of displaying deriva-
tions, but this is only a slight departure of no real importance.
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{1} 1 �p ∧ �q ass.
{1} 2 �p (1,∧ES)
{1} 3 �q (1,∧ES)
{4} 4 �p ass.
{4} 5 p (4,�ES)
{6} 6 �q ass.
{6} 7 q (6,�ES)
{4, 6} 8 p ∧ q (5, 7,∧IS)
{4, 6} 9 �(p ∧ q) (8,�IS)
{4} 10 �q → �(p ∧ q) (9,→ IS)

11 �p→ (�q → �(p ∧ q)) (10,→ IS)
{1} 12 �q → �(p ∧ q) (2, 11,→ ES)
{1} 13 �(p ∧ q) (3, 12,→ ES)

14 �p ∧ �q → �(p ∧ q) (13,→ IS)

To avoid the problem Prawitz proposed the second variant, where the
definition of modal assumptions is more liberal. He introduces the concept
of essentially modal formula (shortly emf-formula) which for S4 is defined
as follows:

(a) ⊥ and �ϕ, for any ϕ are emf-formulae
(b) if ϕ and ψ are emf-formulae, then so are ϕ ∧ ψ and ϕ ∨ ψ.

For S5 it is necessary to add in (a) ♦ϕ, and in (b) ϕ → ψ; equivalently,
and simpler, one can define the set of emf-formulae for S5 as the set of
formulae, where each variable is in the scope of �. Admissibility of these
rules is justified by the following:

Lemma 6.1 If ϕ is emf-formula with respect to S4 (S5), then � ϕ → �ϕ
in S4 (S5)

Proof, by induction on the length of ϕ, in [220].

The latter definition allows of a proof for our example in normal form,
because the assumption in line 1 is essentially modal. Unfortunately, this
variant does not satisfy normalization theorem either. Notice that if in S4
(or S5) Γ � �ϕ, where Γ contains only emf-formulae, then also ψ,Γ � �ϕ,
where ψ is not emf-formula, but then ψ ∧ Γ � �ϕ. Obviously ψ ∧ Γ is not
modalized according to our definition, hence the proof of �ϕ on its basis
requires some maximum formulae again.



6.2. SOME STANDARD ND FOR MODAL BASIC LOGICS 191

Remark 6.1 Prawitz presented also the third version of ND-systems for
S4 and S5 which was believed to satisfy normalization theorem, but it is
a solution of rather different sort. It is admissible in them to apply �
introduction to formula based on any assumption, on condition that there
are some modalized formulae in the proof connecting these assumptions and
a formula in question. Prawitz has proved normalization theorem for this
version in the language with no ∨,∃,♦; it was recently extended for S5
to full language by Martins and Martins [184]. In fact, Prawitz solution is
rather a variant of Fitch’s approach described in Section 6.3. It is also of no
practical importance because it only shows what to check in a completed
proof, not how to construct it. However, Sieg and Cittadini [255] provided
extension of their intercalation calculus to S4 based on this solution.

Anyway, it was noticed by Medeiros [189] that original proof of Prawitz
for S4 is erroneous. She provided slightly modified system but her nor-
malization proof is also incomplete, as was noticed by Andou [7]. On the
other hand, von Plato [212] has shown that even the first version for S4 is
normalizable if we use in classical basis his general elimination rules; in case
of � (in F-format) it takes the form:

(�EG) if ϕ � ψ then Γ,�ϕ � ψ ♣

The serious drawback of this approach is due to its limited scope of ap-
plication. It is not incidental that such systems were devised only for S4 and
S5. These are the logics for which modal rules from SC-formalizations have
Γ� and Δ� defined as subsets of Γ and Δ; no modification of formulae from
Γ ∪ Δ is involved. We can obtain adequate formalizations also for regular
counterpart of S4 or for monotonic versions of these logics by demanding
nonempty (or singular) set of modalized assumptions for premises in case of
� introduction. But it is certainly not obvious how to extend this approach
to other logics.

We do not claim however that some other extensions of Suppes’ format
ND are not possible if we additionaly use some rules of different character.
In Section 6.4.3 we propose alternative way of formalization suitable for
Suppes’ system; one may also consider an application of generalized rules
for � elimination described in Remark 6.5. In [241] Satre proposed ND
system in Suppes’ format for all modal logics considered in [173] which
involves Curry’s rules but add also other rules for � introduction. Although
Satre underlines the influence of Ohnishi/Matsumoto for his work, his rules
have a different character. The problem is basically with adaptation of SC
rules to ND in Gentzen’s S-format. If we are ready to admit rules which
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perform some operations also on the set of assumptions, then we are free
to take any of the SC rules presented in Section 6.1. This is the approach
represented in appendix of [136]. But it leads to some problems with the
realization of such calculus, if we prefer to use Suppes’ format, i.e. not to
use all sequents but just formulae (=succedents) with records of numbers of
assumptions (=antecedent). In Satre’s approach no operations are allowed
on assumptions at the cost of having more complex rules. For K a suitable
rule has the following form:

(S-K) Γ1 ⇒ �ϕ1; ...; Γn ⇒ �ϕn; ϕ1, ..., ϕn ⇒ ψ / Γ1, ...,Γn ⇒ �ψ

By introduction of suitable restrictions on this rule and on (�I) and
addition of sequent forms of rules corresponding to D or T (like (�ES)
stated above) Satre is able to obtain formalizations of all normal and regular
logics from [173] (for quasi-regular ones he must add some other rules as
well). We omit the details but present a proof of K as an example of
application of (S-K):

{1} 1 �(p→ q) ass.
{2} 2 �p ass.
{3} 3 p→ q ass.
{4} 4 p ass.
{3, 4} 5 q (3, 4,→ ES)
{1, 2} 6 �q (1, 2, 5, S-K)
{1} 7 �p→ �q (6,→ IS)

8 �(p→ q) → (�p→ �q) (7,→ IS)

6.2.2 Modalization of Rules

Bull and Segerberg [59] proposed an original method for dealing with modal
logics in ND-systems. The starting point is the observation that any rule
correct in CPL should be still correct in any modal context suitably speci-
fied. The notion of a context is then explained in the following way: if Γ � ϕ
in CPL, then the addition of n boxes to all elements of Γ and ϕ preserves
deducibility. Essentially it is an n-ary application of the condition (RR)
from Section 5.2. Here (RR) provides a justification of a modalization of
any inference rule. For example, if in any F-system the occurrence of ϕ and
ϕ→ ψ in the proof allows us to add ψ by (→ E), then by condition (RR),
we can add �nψ to this proof, if we have already �nϕ and �n(ϕ → ψ).
Similarly, we can modalize all other inference rules, e.g. for ∧ we obtain:
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(�n ∧ I) �nϕ,�nψ / �n(ϕ ∧ ψ)
(�n ∧ E) �n(ϕ ∧ ψ) / �nϕ (or �nψ)

Bull and Segerberg did more, because they also modalized all proof con-
struction rules. Such a solution cannot be justified by condition (RR) alone,
because it is sufficient only for justification of inference rules. Nevertheless
it is in accordance with the starting motivation. Modalization of conditional
proof and indirect proof is based on the following principles:

[�nCOND] if Γ, ϕ � ψ, then �nΓ � �n(ϕ→ ψ)
[�nRED] if Γ,¬ϕ � ⊥, then �nΓ � �nϕ

Both principles are derivable by CPL and (RR).

So in Bull/Segerberg’s system there are no introduction and elimination
rules for �; in case n = 0 all the rules are simply CPL-rules. Introduction
of modal context yields a system adequate for K.

There is a problem of what realization fits best to such a system. Modal-
ized inference rules may be applied in any format; of course, if it is S-system,
then rules in the calculus are defined on sequents, for example for ∧ we need
the following:

(�n ∧ IS) Γ ⇒ �nϕ,Δ ⇒ �nψ / Γ,Δ ⇒ �n(ϕ ∧ ψ)
(�n ∧ ES) Γ ⇒ �n(ϕ ∧ ψ) / Γ ⇒ �nϕ (or Γ ⇒ �nψ)

The problem arises with modalized proof rules. Bull and Segerberg
suggested F-T-system, but it is not clear how, in practise, one should mark
in such a proof a transition from the set of assumptions Γ to �nΓ. If we use
Jaśkowski’s format, the system becomes quite similar to Fitch’s approach
based on the use of modalized reiteration rule (cf. the next section), with
the only difference that there is no special rule for � introduction because
strict derivations may be entered by [COND] and [RED] with the addition
of � n > 0 times to show-formula.

It seems that this system may be simply modified to obtain a more
general solution, independent of the basic format and enabling extensions
to logics other than K. The point is the redundancy of the system. First of
all, we can always keep n = 1 in the indices of � in the definition of rules.
Moreover, we may resign from the modalization of many rules. One of the
possible solution is to modalize proof rules only; we may even use only one
of them – [�nRED]. We will explain how it works in the Remark 6.7 in
the next section. But such a modification of Bull/Segerberg’s system is not
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very original; it is in fact a variant of Fitch’s system.
A better solution, still in accordance with the original motivation, is to

limit the modalization only to inference rules. It is based on the natural
interpretation of condition (RR), and ND-system thus obtained is not a
variant of Fitch’s system anymore, because it forces us to use different proof
strategies. To get an adequate formalization for K without any modification
of proof rules, one must allow of a modalization of inference rules with
empty set of premises, which is simply an application of (RG). Although
formalization of this kind is format-insensitive, practically it is simpler to
combine it with S-format because of the last proviso; in Jaśkowski format
it is not immediately evident if a formula is really not dependent on any
assumptions.

A separate problem is the possibility of extension of this formalization
to other logics. Bull and Segerberg suggest that such basic system for K is
enough; all extensions should be obtained by axiomatic additions. Still we
can consider whether in such a system some extensions can be obtained in
different way. One simple solution, which is very natural in case of basic
logics, is to introduce for every axiom A→ B a corresponding inference rule
A / B. Other proposal of making extensions may be found in Hawthorn
[122] but we omit a presentation because it is rather a nonstandard solution
based on the multiplication of types of strict derivations. Instead, we shall
pay attention to modalization of theses and consider some variants of (RG).
In such a way many normal logics may be formalized with relatively small
effort. Consider the following rules:

(RG�) You may put � before ϕ, if the set of assumptions for ϕ
is empty or ϕ is ν-formula.

(RG♦) You may put � before ϕ, if the set of assumptions for ϕ
is empty or ϕ is π-formula.

(RGM ) You may put � before ϕ, if the set of assumptions for ϕ
is empty or ϕ is m-formula.

It is evident that addition of (RG�) yields K4, (RG♦) – K5, and
(RGM ) – K45. Addition of inference rules covering the effect of D or
T to any of them extends a formalization to D, T, KD4, S4, KD5,
KD45, S5, so most of the basic logics are covered. In some cases we may
obtain adequate result even on smaller basis, e.g. KD45 may be simply
formalized on the basis of a system with (RG♦) only, and a rule for D like
Γ ⇒ �ϕ / Γ ⇒ ♦ϕ (a reader is asked to prove axiom 4 in this system).
Obviously, in such an approach we resign from the idea that there are no
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specific rules for modal functors but it seems that adding axioms to system
for K is not better.

Remark 6.2 The system where only the inference rules are modalized is
still redundant. It is enough to have a variant of (RG) and (�n → ES)
as primary rules. All other modalized variants of inference rules are easily
derivable. Let ψ1, ..., ψk / ϕ be any inference rule; its modalized variant
may be derived in the following way:

{1} 1 �nψ1
...

...
...

{k} k �nψk
{k + 1} k + 1 ψ1
...

...
...

{k + k} k + k ψk
{k + 1, . . . , k + k} k + k + 1 ϕ
...

...
...

3k + 1 ψ1 → (ψ2 → . . . (ψk → ϕ) . . .)
...

...
...

3k + 1 + n �n(ψ1 → (ψ2 → . . . (ψk → ϕ) . . .)
...

...
...

{1, . . . , k} 4k + 1 + n �nϕ

where lines from 1 to k+k contain assumptions, line k+k+1 is obtained by
the application of the rule in question to formulae from lines (k+1)−(k+k),
line 3k+1 results by k applications of (→ IS) to line k+k+1, line 3k+1+n
is obtained by n applications of (RG) to line 3k+ 1, and finally, 4k+ 1 + n
follows by k applications of (�n → ES) to lines 1, . . . , k and 3k + 1 + n. ♣

6.3 Modalization of Reiteration Rule

Fitch [89, 91] is the author of the next, and probably the most popular, ND
approach to modal logics. His solution is not universal, in the sense that
it is not suitable for Gentzen’s format; some variant of Jaśkowski’s format
is presupposed because it is essential in this approach to separate parts of
the proof. We will present it as usual in the KM realization. Despite the
limitation to Jaśkowski’s format, Fitch’s solution has one unquestionable
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advantage – the scope: [89] contains only ND system for T and S4,5 [91]
provides counterparts for some deontic logics. Siemens [256] extends this
formalization further, finally in Fitting [93] one can find a uniform formaliza-
tion for many regular and normal logics. Fitch’s approach was generalized
even further: for basic normal logics of strict implication by Cerrato [66],
for many relevance logics by Anderson and Belnap [5] and for conditional
logics by Thomason [275]. Some extensions, due to Indrzejczak, to bimodal
temporal logics [140] and to first-order modal logics [141] will be presented
below. These are only some examples of application of Fitch’s idea.

We will show that this approach is the closest relative of standard SC
and TS for modal logics. In case of basic logics we may even say that these
approaches are equivalent in the sense that every logic adequately formalized
in SC (or TS) is formalizable in Fitch-style ND and vice versa. This strict
correspondence is destroyed for some of these modal logics which use modal
SC (or TS) rules with more premises than one.

The basic idea of Fitch’s approach is the introduction of special category
of subproofs called strict or modal. In ND-system for CPL one can use any
U-formula from an open derivation of k-degree in open derivation of any
higher degree which is nested in it. In case of modal logic, if new subderiva-
tion is strict, then only special sort of U-formulae from outer derivation
(or formulae obtained by some operation performed on them) may be used.
The logic in question decides what kind of U-formulae (or their derivatives)
is admissible. The idea is that one can obtain ND formalizations for dif-
ferent logics only by modeling the set of suitable formulae, keeping all the
inference and proof rules intact.

Technically, the problem of control over admissible formulae on the level
of realization is solved by the introduction of reiteration rule (Reit) which
regulates the transfer of formulae from a parent derivation to its subderiva-
tions. We did not introduce explicitly this rule to KM-CPL since transfer
of formulae was not restricted and the definition of proof was simpler on
condition that we can use any U-formula in current subderivation. In modal
setting such a rule must be explicitly stated and every application of any
inference rule must be performed only on premises which are present in the
current subderivation.

If we restrict our consideration to L�, then to obtain an adequate for-
malization of K we must add to the calculus for CPL only one rule of proof
construction:

5In fact, Fitch did not realize that he formalized T; he claimed that his rules gives
“almost S2”.
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[NEC-K] if Γ � ϕ, then �Γ � �ϕ

The realization of this rule in KM format may be displayed as follows:

D
i SHØW: �ϕ

D′
...

k ϕ

where: �Γ ⊆ U(D), and Γ ⊆ U(D′), moreover we assume that the only
elements of U(D′) are elements of Γ or formulae deduced from them with
the help of admissible rules, and that there are no S-formulae in D′.

Informally this rule can be read: if ϕ is derivable in the strict derivation
of degree k + 1 based on formulae in Γ, then �ϕ is deduced in the parent
derivation of degree k from �Γ. The comparison of [NEC-K] with SC-rule
(⇒ �) makes clear the relationship between these approaches. The premise
of SC rule corresponds to the strict subderivation closed in the box, whereas
the conclusion corresponds to the outer derivation. We may generalize this
rule in Fitting’s style to cover extensions of K.

[NEC] if Γ� � ϕ, then Γ � �ϕ

where Γ� for K is like above (i.e. {ϕ : �ϕ ∈ Γ}) and for stronger logics
additionally contains:

• {�ϕ : �ϕ ∈ Γ} for transitive logics

• {♦ϕ : ϕ ∈ Γ} for symmetric logics

• {♦ϕ : ♦ϕ ∈ Γ} for Euclidean logics

To obtain a correct [NEC] for e.g. KB4 we just take a union of the first two
sets. It is easy to see that a definition for Γ� is just like this provided by the
table in Section 6.2; the only difference is that instead of ν- and π-formulae
we restrict considerations to �- and ♦-formulae. In order to cover serial or
reflexive logics one must add suitable inference rules:

(D) �ϕ / ♦ϕ or (T ) �ϕ / ϕ



198 CHAPTER 6. STANDARD APPROACH TO MODAL LOGICS

Clearly, a definition of derivation of ϕ in modal KM system should be
changed accordingly. In all clauses describing the application of inference
rules we must add a proviso that premises must be present in current sub-
derivation, we must also state additional clauses concerning closure of a
subderivation by [NEC] and the application of reiteration.

[NEC]: Let �ϕ be a show-formula of k-degree subderivation, then we can
close this subderivation provided ϕ has appeared as U-formula in it, and
there is no indirect assumption ¬�ϕ under the show-line.

(Reit): Let Γ be the set of U-formulae of k-degree subderivation and ϕ an
element of Γ, then ϕ may be added to k + 1-degree subderivation if either:

(a) opening show-formula is not of the form �ψ, or
(b) the first U-formula of this subderivation is an indirect assumption.

If neither (a) nor (b) is satisfied, then ϕ may be added if it belongs to Γ�.

The following example (a proof of a thesis of S5) shows how it works.

1 SHØW: �p ∧ ♦q → ♦�(p ∧ �♦q) [11, COND]
2 �p ∧ ♦q ass.
3 �p (2, αE)
4 ♦q (2, αE)
5 SHØW: �(p ∧ �♦q) [10, NEC]
6 p (3, Reit(K))
7 ♦q (4, Reit(5))
8 SHØW: �♦q [9, NEC]
9 ♦q (7, Reit(5))
10 p ∧ �♦q (6, 8, αI)
11 ♦�(p ∧ �♦q) (5, T )

In case of modal reiteration, in justification column we put in brackets
the name of the corresponding modal axiom which admits this step, e.g. in
line 6 we have an application of reiteration admissible already in K, whereas
in line 7 and 9 it is admissible in K5. Applications of reiteration admissible
for CPL will be justified just by (Reit) with no parameter in brackets. In
the last step we have used a contrapositive of (T ).

In case of regular logics one should add to [NEC] a condition to the
effect that subderivation of k + 1-degree may be closed by this rule if at
least one usable-formula of k-degree derivation is �-formula. Definition of
Γ� for these regular logics we have considered is the same as in normal case.
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It is quite easy to prove that this system is adequate with respect to all
basic normal and regular logics. Completeness requires proofs of suitable
axioms, which is routine; (RG) and (RR) is simulated by [NEC]. Soundness
is also not very difficult to prove; we will do it in the next section.

Remark 6.3 Fitting [93] in his formalization for regular logics used different
but equivalent solution; instead of [NEC] he proposed a proof construction
rule based on the principle:

[MOD] if Γ� � ϕ ∨ ψ, then Γ � ♦ϕ ∨ �ψ ♣

Remark 6.4 Rules [NEC] and (Reit) may be significantly simplified in our
version of KM. First, as we remarked in Chapter 2, one can eliminate from
KM both [RED] and the rule for entering indirect assumptions, because
these rules are not necessary in the system with our set of inference rules.
In so modified system both [NEC] and (Reit) may be formulated as follows:

[NEC ′] Let �ϕ be a show-formula of k-degree subderivation, where ϕ has
appeared as a usable-formula, then we can close this subderivation, provided
all its usable-formulae justified by (Reit′) belong to Γ�.

(Reit′) Let Γ be the set of usable-formulae of k-degree subderivation, then
we may add to k + 1-degree subderivation either:

(a) ϕ ∈ Γ�, if show-formula of this subderivation is �-formula, or

(b) ϕ ∈ Γ

Even if [RED] and indirect assumptions are kept intact, both rules can be
simplified in case of reflexive logics; we can use [NEC ′] and the following:

(Reit′′) Let Γ be the set of usable-formulae of k-degree subderivation, then
we may add to k + 1-degree subderivation ϕ belonging either to Γ� or to Γ

This simplification is due to the fact that although in case of [NEC],
(Reit) must be restricted to Γ�, then in case of other rules of closing a
derivation both elements of Γ and Γ� are admissible in reflexive logics, be-
cause formulae from Γ� may be inferred by the application of (T ). Also
the condition that indirect assumption should not be present in the deriva-
tion to be closed by [NEC] is not needed because for T, and its extensions
treated here, one can prove the following as an admissible rule:
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[NECT ] if Γ�,¬�ϕ � ϕ, then Γ � �ϕ

Our primary formulation, despite the complications in the definition
of (Reit), has one serious advantage. All the necessary restrictions are
stated as the conditions to be satisfied before we apply the rule, hence
we do not need to check a finished proof whether there are some mistakes.
Simpler formulations, often found in literature, usually require some control
of correctness after the proof is completed. ♣

Remark 6.5 The drawback of this formalization is the lack of any rule of
� elimination for logics weaker then T; in case of D one can use in this
role an inference rule (D) �ϕ / ♦ϕ, but it is an ad hoc solution. Some
authors, like Garson [105], prefer yet another terminological convention.
Given the definition of Γ� for K, it is possible to define (Reit(K)) for strict
derivation as a kind of (�E), while allowing simple transfer of formulae in
ordinary subderivations. This solution has also some disadvantages, when
we consider how to obtain extensions of K. These forms of reiteration hardly
may be treated in a similar way, because e.g. in K4, � is not only eliminated
but also the whole �-formula is put in a strict subderivation. Garson simply
applies Bull and Segerberg’s solution and add suitable axioms.

A different solution is possible, at least for some logics which are not re-
flexive, if we consider some variants of (�E) defined on modalized formulae,
e.g.:

(�E�) �ϕ / ϕ, for any �-formula ϕ
(�E♦) �ϕ / ϕ, for any ♦-formula ϕ
(�E�♦) �ϕ / ϕ, for any m-formula ϕ

(�E�) may be added to K5 and its extensions, (�E♦) to KD4, which
implies that (�E�♦) is a suitable rule for KD45. In this way, at least some
logics without T have (�E) of some sort, but it should be noticed that all
these rules are in fact derivable in the basic formalization, what is more,
they cannot replace the rule (D) in KD4, or KD5. The exception is KD45,
a very important epistemic logic; instead of replacement of (�E) by (D) in
ND-S5, one can use (�E♦), which is simpler and more natural. Proofs of
K, 4, 5 run like in ND-S5, it is enough to show that D is also provable; as a
shortcut we will use a secondary rule (R5) ♦�ϕ / �ϕ, which is obviously
derivable either.
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1 SHØW: �p→ ♦p [14, COND]
2 �p ass.
3 SHØW: �♦p [13, RED]
4 ¬�♦p ass.
5 ♦�¬p 4,by def.
6 �¬p (5, R5)
7 �p (2, Reit.)
8 SHØW: �♦p [12, NEC]
9 ¬p (6, Reit(K))
10 p (7, Reit(K))
11 ⊥ (9, 10,⊥I)
12 ♦p (11,⊥E)
13 ⊥ (4, 8,⊥I)
14 ♦p (3,�E♦)

Remark 6.6 The definition of Γ� may be simplified in some cases because
it is redundant. B and S5 can serve as examples. Let us define Γ� for B
as {♦ϕ : ϕ ∈ Γ} and for S5 as {♦ϕ : ♦ϕ ∈ Γ}. Admissibility is obvious, so
it is enough to prove sufficiency of these definitions. Provability of (RG) is
intact, B is still provable trivially with this Γ� in both logics. It suffices to
prove K in both systems and 4 in S5 Notice that in both logics we may add
also a secondary inference rule: (RB) ♦�ϕ / ϕ. The proof of derivability
of (RB) is obvious and its use simplifies a proof of K. Below we present a
proof of it in ND-B, with weakened (Reit):

1 SHØW: �(p→ q) → (�p→ �q) [3, COND]
2 �(p→ q) ass.
3 SHØW: �p→ �q [6, COND]
4 �p ass.
5 �(p→ q) (2, Reit.)
6 SHØW: �q [11, NEC]
7 ♦�(p→ q) (5, Reit(B))
8 ♦�p (4, Reit(B))
9 p→ q (7, RB)
10 p (8, RB)
11 q (9, 10, βE)

Analogously we can prove K in ND-S5, the only difference is that in
line 4 and 5, we should first apply contrapositive of (T ) (ϕ /♦ϕ) before it
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is possible to move the conclusions by (Reit(S5)) to the strict derivation.
In S5 one must also prove axiom 4:

1 SHØW: �p→ ��p [4, COND]
2 �p ass.
3 ♦�p (2, T )
4 SHØW: ��p [6, NEC]
5 ♦�p (3, Reit(S5))
6 SHØW: �p [14, RED]
7 ¬�p ass.
8 ♦¬p (7,by def.)
9 SHØW: �¬�p [11, NEC]
10 ♦¬p (8, Reit(S5))
11 ¬�p (10,by def.)
12 ¬♦�p (9,by def.)
13 ♦�p (5, Reit.)
14 ⊥ (12, 13,⊥I)

One could easily notice that in this way it is possible also to get ND
system for KB and KDB, simply by dropping (T ) or replacing it by (D).
It is not possible to formalize KB4 in this way. KD45 admits a weaker
definition of Γ� either, because the above proof of 4 is also a proof in this
logic (line 3 is justified by (♦I�), which is a dual version of (�E♦)), so it is
sufficient to define Γ� for KD45 as the union of Γ� for K (instead of K4)
and for S5 in the latter version.

Clearly one can define suitable rules for SC and TS with modified defi-
nition of Γ� (and Δ�) on the basis of the above considerations. But calculi
with so modified rules may loose some important properties that hold for
systems of Takano or Shvarts (cf. discussion in Section 6.2). ♣

Remark 6.7 When discussing Segerberg’s approach, we have noticed that
one possible extreme is to base it on the modalized form of indirect proof
which was stated as:

[�nRED] if Γ,¬ϕ � ⊥, then �nΓ � �nϕ

Here if n = 0 we have just ordinary [RED], otherwise we obtain a rule
strong enough to obtain ND for K. Since it is sufficient to have n = 1 in
practice it is realized in such a way that to any proof in a system ND-K,
as defined in this section, we add as an assumption ¬ϕ under each show-
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formula �ϕ, and change a justification from [NEC], to [�nRED]. Clearly,
for stronger logics we must keep suitable modal reiteration rule as defined
above, but it still works because the following rule is obviously admissible:

if Γ�,¬ϕ � ⊥, then Γ � �ϕ

In practise it is easy to realise – just add an indirect assumption to every
strict subderivation. ♣

6.4 Rules for Possibility

So far we have used ♦ as a definitional shortcut, which was in accordance
with the usual practice of many authors. However, the problem of formal-
ization of ♦ is sufficiently interesting in itself to be described separately.
Moreover, as we shall see, an application of ♦ as primitive opens the way to
define modal ND which is not committed to Jaśkowski’s format, but may
be used with any other format presented in Chapter 2.

6.4.1 Original Fitch’s System

In the original system of Fitch for T and S4, ♦ was in fact treated as an
independent functor and characterized by the pair of rules of introduction
and elimination. On the level of calculus of our ND system the first of them
is an introduction rule:

(♦I) ϕ / ♦ϕ

which is of course normal only for reflexive logics. The second one is another
proof construction rule:

[POS] if ψ, Γ� � ϕ, then ♦ψ, Γ � ♦ϕ

Its application in KM schematically looks like this:

D
i SHØW: ♦ϕ
i+ 1 ψ

D′
...

k ϕ
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where: �Γ ∪ {♦ψ} ⊆ U(D), Γ ⊆ U(D′), and ψ is a modal assumption.
Moreover, we assume that the only elements of U(D′) are elements of Γ or
formulae deduced from Γ ∪ {ψ} with the help of admissible rules, and that
there are no S-formulae in D′.

On the level of realization we must add to KM two rules that corre-
spond to [POS]; one for closing a derivation and one for entering modal
assumption:

[POS] Let ♦ϕ be the show-formula of k-degree subderivation with the first
U-formula being modal assumption, then we can close this subderivation,
provided ϕ has appeared in it as U-formula.

(mod.ass.) If ♦ψ is U-formula of k-degree subderivation and ♦ϕ is S-formula
entering k+1-degree subderivation, then we may add ψ as a modal assump-
tion of the k + 1-degree derivation

In fact, also (Reit) should be modified; we introduce the version which
works for the system in which both [NEC] and [POS] are counted as prim-
itive. Because of the stylistic reasons it will be defined dually to our official
formulation of (Reit) from Section 6.3.

Let Γ be the set of U-formulae of k-degree subderivation and ϕ ∈ Γ�,
we may put ϕ into subderivation of k+ 1-degree by (Reit) if at least one of
the following conditions is satisfied:

(a) show-formula of this subderivation is �ψ and the first U-formula of
this subderivation is not an indirect assumption

(b) the first U-formula of this subderivation is modal assumption;
if neither (a) nor (b) is satisfied, then we may put into this derivation any
ϕ ∈ Γ

One should notice that although an introduction of modal assumption is
an optional element (we may have some ♦-formula as show-formula but to
try to close this subderivation by different rule), its presence is a necessary
condition to close the derivation by [POS].

Introduction of special rules for ♦ is very convenient in practice. Very
often we may produce shorter proofs for many theorems (and usually with
relatively smaller effort). But one should notice that the system containing
both [NEC] and [POS] in such a version is still incomplete in the language
with both modalities taken as primitive. To overcome the problem the
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original system of Fitch contains also 4 rules of elimination and introduction
for negated modal formulae:

(¬�E) ¬�ϕ / ♦¬ϕ
(¬�I) ♦¬ϕ / ¬�ϕ
(¬♦E) ¬♦ϕ / �¬ϕ
(¬♦I) �¬ϕ / ¬♦ϕ

The presence of these rules, let us call them definitional rules, raises the
question: are they really necessary to save completeness? We will return to
this question in the next Chapter (Section 7.3.2) – for the time being we
just note that one may easily formulate the system in such a way that all
these rules are dispensable.

6.4.2 Fitch’s System Generalized

In order to avoid definitional rules it is enough to apply Fitting’s generalized
notation. Both proof construction rules obtain the form:

Γ Γ ∪ {πi1}
i SHØW: νi i SHØW: πi2

Γ� i+ 1 π1
... Γ�
...

...
k ν k π2

where Γ� is defined exactly as in the table from Section 6.1 specifying sets of
formulae in antecedents of sequents of suitable SC rules. It should be noted
that with the generalized forms of proof construction rules it is possible to
close by [NEC] a derivation starting with SHOW:¬♦ϕ provided we deduce
U-formula ¬ϕ; in [POS] we can add as a modal assumption ¬ϕ if we have
already ¬�ϕ in the proof.

Such a system is very handy in use but quite redundant. In particular,
one may construct a system based either on [NEC] – we did it in the last
section – or on (some form of) [POS] (cf. Fitting [93]). We will show the
mutual eliminability of these rules in the next Chapter after introduction of
ND rules for weak modal logics. First, in the next subsection, we will explore
what possible advantages can we get by choosing one of the extreme. Yet
for practical purposes we rather advice to use a system in its most general
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form, because usually proof search is easier and completed proofs shorter.
So this is our official version of KM for the basic normal and regular logics.
Below, we display an example of a proof in KB using both forms of proof
construction rules; a reader is invited to prove this thesis using only [NEC]
or only [POS].

1 SHØW: �(p→ ¬♦q) ∧ ♦p→ ¬q [5, COND]
2 �(p→ ¬♦q) ∧ ♦p ass.
3 �(p→ ¬♦q) (2, αE)
4 ♦p (2, αE)
5 SHØW: ¬q [15, RED]
6 q ass.
7 SHØW: �♦q [8, NEC]
8 ♦q (6, Reit(B))
9 �(p→ ¬♦q) (3, Reit)
10 ♦p (4, Reit)
11 SHØW: ¬�♦q [14, POS]
12 p m.ass.(10)
13 p→ ¬♦q (9, Reit(K))
14 ¬♦q (12, 13, βE)
15 ⊥ (7, 11,⊥I)

Note the generalized form of [POS] used in line 11; m.ass.(10) denotes
a modal assumption with indication of the line where it comes from.

We already stated that this system is complete even without [POS]
but we should anyway demonstrate that it is not too strong. In proving
soundness we will apply the technique introduced in Chapter 2. It is fairly
easy to check that inference rules like (T ) or other considered, are L-normal
for suitable logics, and that the new proof construction rules are normality
preserving with respect to all basic logics. So we just state the first lemma
and demonstrate one case for the second.

Lemma 6.2 Every inference rule is L-normal in suitable modal logic L and
its extensions.

Lemma 6.3 Every proof construction rule is normality preserving in all
basic normal or regular logics.

Proof Consider [POS]. Assume that Γ�, ϕ |= ψ but Γ,♦ϕ �|= ♦ψ. So in
some w all elements of Γ as well as ♦ϕ holds, but w � ♦ψ. Hence for some
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accessible w′, w′ � ϕ but w′
� ψ. Consider elements of Γ�, all are taken by

modal reiteration from Γ, so there is a division of cases according to which
logic is under consideration. Take K45 as an example and some arbitrary
χ ∈ Γ�. Either �χ is in Γ or χ is in Γ and χ is some m-formula. In all
cases w′ � χ. The first case holds for every model since w � �χ and Rww′.
If χ is ν-formula it holds by transitivity of R; if χ is π-formula it holds by
euclideaness of R. So w′ � Γ� which implies that w′ � ψ and we have a
contradiction. Thus Γ,♦ϕ |= ♦ψ.

Now, in order to prove soundness, we must change a bit a definition
of justified subproof. In fact, the introduction of reiteration rule leads to
simplification of this definition (and a proof) since we do not use as premises
of inference rules any formula from outer derivation. Let D be any proof
and consider any subproof D′ of degree n > 0 contained in it. We say that
this subproof is justified iff, Γ |= ψn, where ψn is the last formula of D′, and
Γ is the set of all formulae of D′ introduced as assumption or by reiteration.

The proof proceeds as in Chapter 2, by double induction: on the depth
k of D and on the length of its subproofs. In the basis we again consider all
subproofs of degree k, i.e. with no subproofs inside, and of length n, and
show that Γ |= ψi (1 ≤ i ≤ n) which implies that they are justified.

Basis: i = 1, so ψ1 is an assumption or a formula introduced by reiter-
ation, and the claim follows by reflexivity and monotonicity of |=. Assume
for any i such that i < k ≤ n the claim holds and consider ψk. If ψk is by
reiteration, then again Γ |= ψk by reflexivity and monotonicity. Otherwise
ψk is deduced by some inference rule. By induction hypothesis our claim
holds for all premises and by Lemma 6.2. the rule we have used is L-normal.
Hence by transitivity of |= again Γ |= ψk which holds for n = k as well and
we are done.

In showing that every subproof of degree i is justified we proceed exactly
as in the proof of theorem 2.1. Every line of this subproof which is not a
canceled S-line is justified by the same reasoning as in the basis, whereas
previous S-formulae need additional use of the induction hypothesis that all
subproofs of degree i+ 1 are justified. Let ψi be the first such a formula; we
must show that Γ |= ψi, where Γ is the set of all formulae in this subproof
introduced as an assumption or by reiteration. By the induction hypothesis
we have Γ′ |= χn, where χn is the last line of suitable subproof of degree
i+1 and all elements of Γ′ are introduced as an assumption or by reiteration
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on the basis of some formulae occurring at this stage in the subproof of
degree i. By Lemma 6.3. Γ′′ |= ψi because completion of this subproof
was obtained by some proof construction rule, and all rules are normality
preserving. Now, Γ′′ is not necessarily a subset of Γ; it may contain formulae
deduced from some elements of Γ by inference rules. Let Γ′′ = Δ ∪ Σ,
where Δ ⊆ Γ and Σ is the set of k formulae introduced by some inference
rules. Consider the first χ ∈ Σ, by Lemma 6.2. and monotonicity Δ |= χ
since the applied rule is normal. It holds also for the rest elements of Σ
by this lemma, monotonicity and possibly by transitivity of |=. So by k
applications of transitivity with respect to Γ′′ |= ψi and Δ |= χi, i ≤ k
we obtain Δ |= ψi and by monotonicity we finally conclude that Γ |= ψi.
By the same argument we consecutively demonstrate that other previous
S-lines in considered subproof of degree i are also justified. Since it holds
for all subproofs, we obtain:

Theorem 6.1 (Soundness of KM for L) If Γ �L ϕ, then Γ |=L ϕ,
where L is every basic regular or normal logic

Theorem 6.2 (Adequacy of KM for L) Every basic regular and nor-
mal logic L is adequately characterized by KM-L.

Remark 6.8 It must be said that ordinary method of proving soundness of
ND systems6 run into troubles in Fitch’s format ND for modal logics. It is
not clear how to transform into such a sequent a formula which is introduced
by modal reiteration into a strict subderivation. Certainly if ϕ′ is such a
reiterated formula and ϕ its origin then it is rather not the case that Γ |= ϕ
implies Γ |= ϕ′ (e.g. in K where ϕ is some νi and ϕ′ is ν). Similar problems
apply to justification of rules closing strict subproofs. Interesting innovation
of this strategy of soundness proof may be found in [104, 105]. Garson
instead of sets of active assumptions uses sequences of them (which, by the
way, better complies with ordered character of subderivations in Jaśkowski’s
format – cf. Section 2.4.3) and for every strict subproof introduces � as
the corresponding assumption. So for each formula in the proof we define a
sequent with this formula in the succedent and the sequence of formulae and
boxes in the antecedent. This trick enables to keep the proof by induction
on the length of the whole derivation at the cost of small modification of an
interpretation of each line. Each sequence of active assumptions (formulae

6We mean soundness profs which are based on the transformation of every formula into
a sequent containing this formula in the succedent and the record of active assumptions
in the antecedent – cf. introductory remarks in Section 2.6.
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and boxes) is encoding a R-path in a partial description of a model, where
a formula from the succedent holds in the last world of this path. So we
do not prove, as in classical case, that Γ |= ϕ holds in line i provided some
other statements of this sort hold in earlier lines. We rather prove that
M, w � ϕ, provided some other statements of this sort hold in earlier lines.
♣

6.4.3 Modal Assumptions

In the previous subsection we have noticed that adequate formalization of
modal logics can be based on only ♦ as a primitive functor. This possibility
is fully realized by Fitting [93], who presented two different ND systems
for modal logics. One, called A-system, is based on [NEC], and the other,
I-system, is based on some (stronger) form of [POS] which we name [⊥]F .

[⊥]F if Γ�, ψ � ⊥, then Γ,♦ψ � ⊥

The reason for preferring such a rule is connected with the fact that,
in the context of normal logics, [POS] is too weak for complete charac-
terization, although it is sufficient in weaker logics; we will show this in
Chapter 7.

This distinction is quite important for Fitting. He remarked that, with
regard to proof construction, A-system is more connected with axiomatic
formalizations based on (RG), whereas I-system is rather close to tableau
systems. It makes I-system a better candidate as a potential proof-search
tool, whereas A-system is easier to use for completeness proof of nonana-
lytic version. Semantic reasons for the distinction are even more important;
strict derivations closed by [NEC] are interpreted in a different way than
those closed by [⊥]F . In the former case strict derivation is a counterpart
of an arbitrary chosen world (hence the name A-system per analogiam to
traditional general-categorical A-statements). In the latter, it is a counter-
part of some specific world in a Kripke model (hence the name I-system
as particular-categorical I-statement). This informal interpretation is for
Fitting a basis for the construction of respective soundness proofs for both
systems.

So far we have run a different course, of mixing both systems, but full
characterization apart, we can ask a question: what advantages our pos-
sibilistic approach, “possibly” offers? Previous presentation presupposed
Jaśkowski’s format with the apparatus of strict derivations and restricted
reiterations. But the presence of modal assumptions can make at least
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one of these components unnecessary, because all the required information
which was transported into strict derivation by (Reit) may be incorporated
into the modal assumption which is possible due to the properties of logics.
Let us display in the next lemma some new rules of ♦ introduction that are
normal in some regular and normal logics (and their extensions, of course):

Lemma 6.4 (Secondary normal rules) The following rules are normal
in respective logics:
(a) ♦ϕ, �ψ / ♦(ϕ ∧ ψ) in R
(b) ♦ϕ, �ψ / ♦(ϕ ∧ �ψ) in R4
(c) ♦ϕ, ψ / ♦(ϕ ∧ ♦ψ) in KB
(d) ♦ϕ, ♦ψ / ♦(ϕ ∧ ♦ψ) in S5

Proof is an easy exercise.

The similarity of these rules to the respective definitions of Γ� is straight-
forward. It holds that if we have a definition of Γ� for some logic, we can
define a suitable introduction rule for ♦ for exactly the same logic. More-
over, if we apply for this logic a formalization with [⊥]F instead of [NEC]
and with suitable rule for ♦ introduction as primitive, then we can get rid
of restricted (Reit). The only way of entering strict derivation in such a
system is [⊥]F and (Reit) is simply forbidden here. All formulae that we
need to close such a proof, and that were so far transported by (Reit), may
be linked into conjunction with ♦, which is next turned into a modal as-
sumption of this subderivation. But we can go even further because such
a solution no longer pressuposes Jaśkowski’s format or Fitch’s approach in
particular. We do not have special reasons to separate parts of the proof
as subderivations, strict or nonstrict or whatever, hence we can combine
this approach with any format of ND. Let us illustrate how to get such a
system for R in Suppes’ representation. As a counterpart of [POS] we will
introduce the following rule for (♦E):

A i ♦ϕ
...

...
...

{k} k ϕ modal assumption
...

...
...

{k} n ψ
A n+ 1 ♦ψ (i, k, n,♦E)
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It is justified by the following rule admissible in all considered logics7:

If Γ � ♦ϕ and ϕ � ψ, then Γ � ♦ψ.

where Γ is the set of assumptions corresponding to the assumption-set A on
the schema above.

We also need a sequent version of the first of ♦ introduction rules, dis-
played above in Lemma 6.4, and some sequent versions of definitional rules.
In order to get the extensions of R it is enough to provide additional suit-
able sequent versions of the above rules in the system and to strengthen
our version of (♦E), replacing ψ by ⊥, especially if we want to formalize
normal logics. Careful reader should not have any problems with detailed
exposition, so we keep it as granted. The overall moral is that in general, ♦
seems to fit better to ND systems as a primitive functor because it is format
insensitive.

On the other hand, this formally simpler and format insensitive solution,
is practically more complicated. We must be able to build some π-formula
(a candidate for modal assumption) before we start a strict subderivation.
In practice, it is much easier to see what we need during the construction
of strict derivation and apply reiteration when necessary, than to predict in
advance what will be needed later. Also, in many cases, we must build rather
lengthy conjunction, then decompose it, which makes a proof without use of
reiteration much longer. Therefore, in what follows we prefer for practical
applications rather ND with both [NEC] and [POS] as primitive rules, and
with reiteration, although for theoretical simplicity we often describe only
reduct-system based on [NEC] alone (i.e. Fitting’s A-system).

6.5 Standard ND for Weak Logics

There is no difficulty in extending Fitch’s approach to monotonic and con-
gruent basic logics. In order to get ND-system for M it is sufficient to add
to KM for CPL two strict proof construction rules [NECM ] and [POSM ]:

[NECM ] if ν1 � ν2, then Γ, νi1 � νi2
[POSM ] if π1 � π2, then Γ, πi1 � πi2

[NECM ] is a generalized ND counterpart (with added weakening) of

7It is in fact a rule which preserves normality even in monotonic logics – cf. the next
section.
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suitable SC rule from Section 6.1 of the form:

(M) ψ ⇒ ϕ
�ψ ⇒ �ϕ

The only difference is that SC was formulated in L�, whereas here we use
both modalities and generalized notation to cover interdefinability of � and
♦. In fact, we could use only one of them as primitive even in full language
because they are not independent (cf. the proof of their eliminability in the
next Chapter) We may display their application in KM as follows:

i νi
1 i πi

1
...

...
j SHØW: νi2 j SHØW: πi2
j + 1 ν1 j + 1 π1

...
...

k ν2 k π2

where there is no show-lines in a box and no reiteration into strict boxes.

But this time some care is needed in the formulation of these rules on
the level of realization in KM. First of all, no reiteration (modal or ordinary)
is admissible in strict subderivations. The only formula transported from
the outer (parent) derivation is a modal assumption which is some ν in case
of [NECM ] or some π in case of [POSM ]. Note also that the presence of
modal assumption is necessary for completion of a subproof by one of these
rules. On the other hand, we should not make an introduction of modal
assumption an obligatory element in case of modal formula in show-line,
After all, one may start a subderivation with, say S-formula ♦ϕ, but prefer
to proceed with indirect proof for instance. Anyway, the rules of completion
of a subproof must clearly put respective constraints (no reiteration and
obligatory modal assumption). The following formulation makes it clear:

(mod.ass.) If νi1 (resp. πi1) is U-formula of k-degree subderivation and νi2
(resp. πi2) is S-formula opening k + 1-degree subderivation, then we may
add ν1 (resp. π1) as a modal assumption of the k + 1-degree subderivation

(Reit) If ϕ is U-formula of k-degree subderivation, then it may be repeated
as U-formula of k + 1-degree subderivation, provided there is no modal
assumption as the first line of this k + 1-degree subderivation
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[NECM ] ([POSM ]) Let νi2 (πi2) be the show-formula of k-degree subderiva-
tion, where the first U-formula is modal assumption, then we can close this
subderivation, provided ν2 (π2) has appeared as U-formula in it.

One should note that these rules are in fact format-insensitive, similarly
as modified possibilistic approach described in the preceding section. In
fact, a formulation of (♦E) in Suppes’ format displayed therein was just a
S-system counterpart of [POSM ] giving adequate formalization of M in L♦.
Only the addition of inference rules listed in Lemma 6.4 gives us R and some
of its regular extensions (obtained by “pumping up” a modal assumption).
It shows that we may, in a similar way, use [NECM ] with modal assumption
and no reiteration as a basic ND system for M and strengthen it to regular
and normal basic logics by addition of suitable inference rules of the sort
given in Lemma 6.4. In case of normal logics we must additionally admit
“empty” modal assumption to cover (RG). But it is rather theoretical
possibility – at the end of the preceding section we have mentioned some
practical troubles connected with abandoning reiteration rule.

In case of the weakest congruent logic E we have in SC two-premise rule
(see Section 6.1.) which in generalized form looks like this:

(E′) ν1 ⇒ ν2 ν2 ⇒ ν1

νi1 ⇒ νi2

We have discussed in Chapter 4 how to simulate binary branching rules
(taken from TS or KE) in KM. Recall that in Jaśkowski’s format ND we
may display the content of one branch as a new subderivation initiated
by S-formula which is the main formula of the second branch. But this
technique has some limitations. It is obvious that rules with more than
two branches are difficult to direct simulation in such a format, but even in
case of binary-branching rules we may encounter some difficulties. It is a
case of the above rule schema. In Hintikka-style TS reformulation and with
weakening included this rule has the following form:

(E′) Γ, νi1,−νi2
ν1,−ν2 | −ν1, ν2

The problem is that in both branches we proceed with only chosen modal
subformulae from premise-set; the rest is lost. If we want to simulate such
a rule in the way described in Chapter 4 we may of course define a sub-
proof corresponding to one branch (e.g. left) as strict with ν1,−ν2 as modal
premises and no other formulae added by reiteration. But then S-formula
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is −ν1 ∧ ν2 and if we close a subderivation it became a U-formula of outer
derivation which means that all formulae from Γ∪ {νi1,−νi2} are at our dis-
posal. Such troubles may be avoided in Gentzen’s tree-format by direct
simulation of SC rule, where both premises correspond to strict subderiva-
tion. On the level of calculus it reads:

[NECE ] if ν1 � ν2 and ν2 � ν1, then Γ, νi1 � νi2

On the level of realization it looks like this:

[ν1] [ν2]
...

...
Γ νi1 ν2 ν1

νi2

In this place one weak point of Jaśkowski’s format should be noted,
particularly evident in KM because of the presence of show-lines. This
format does not have natural devices for the realization of proof construction
rules with more than one subproof involved. On the other hand, a tree-
format of Gentzen is very handy in realization of such rules; any rule of the
form:

if Γ1 � ϕ1, . . . ,Γn � ϕn, then Δ � ψ

is realized in this way:

[Γ1] . . . [Γn]
... . . .

...
Δ ϕ1 . . . ϕn

ψ

Similarly for S-systems, also in Suppes’ format (i.e. with linear proofs).
In KM the realization of such a rule would require a sequence of n boxes,
each with its own premise, initiated by one S-line. It is possible to define
but rather artificial. In case of [NECE ] it may be displayed as follows:
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Γ
i νi

1
...

j SHØW: νi2
j + 1 ν1

...
k ν2

k + 1 ν2
...

l ν1

We omit cumbersome details of realization of such rules in KM. Instead
we propose a simpler solution, more suitable for this kind of ND system. It
is based on the following rule:

[NEC ′
E ] if ¬(ϕ↔ ψ) � ⊥ , then Γ,�ϕ � �ψ

Clearly a subproof starting with assumption ¬(ϕ ↔ ψ) is strict with
reiteration blocked similarly as in ND-M. We leave the exact formulation
to the reader.

ND-Systems for M and E may be extended to stronger monotonic or
congruent logics but since there are no reiteration rules for strict subproofs
we cannot apply Fitting’s strategy of defining sets of admissible reiteration-
formulae. We are left with two strategies:

• add suitable axioms/inference rules

• transform suitable modal SC-rule into strict proof construction rule.

The first is in essence the program of Bull/Segerberg described in Sec-
tion 6.2.2. The second approach makes use of characteristic SC-rules from
Section 6.1.3. In case of monotonic logics, note that all rules defining basic
logics, except (T ), fall under one of the following schemata:

(SC-1) ϕ⇒ ψ
ϕ′ ⇒ ψ′ (SC-2) ϕ, ψ ⇒

ϕ′, ψ′ ⇒ (SC-3) ⇒ ϕ, ψ
⇒ ϕ′, ψ′

To get suitable proof construction rules we must first transform every
SC-rule of the form (SC-2) or (SC-3) into equivalent rule of the form (SC-1),
e.g.
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(5) ⇒ �ϕ,ψ
⇒ �ϕ,�ψ

is transformed into:

(5’) ¬�ϕ⇒ ψ
¬�ϕ⇒ �ψ

Now, to every modal SC-rule of the form:

(SC-1) ϕ⇒ ψ
ϕ′ ⇒ ψ′

there correspond a proof construction rule [SC-1M ] of KM which may be
displayed by the following figure:

i ϕ′
...

j SHØW: ψ′

j + 1 ϕ
...

k ψ

obviously, a subproof in the box is strict with no reiteration allowed.

In case of congruent logics this approach is harder to realize in KM (or
any other Jaśkowski’s format ND) since all SC-rules (except (T )) have two
premises. So in every case we would need two consecutive strict subproofs
to justify addition of some modal formulae to outer subderivation. Again,
for KM it is simpler to use the following proof construction rules with one
strict subproof only:

[DE ]: if ¬(ϕ↔ ¬ψ) � ⊥, then Γ,�ϕ � ¬�ψ
[4E ]: if ¬(�ϕ↔ ψ) � ⊥, then Γ,�ϕ � �ψ
[BE ]: if ¬(�ϕ↔ ¬ψ) � ⊥, then Γ,¬ϕ � �ψ
[5E ]: if ¬(�ϕ↔ ¬ψ) � ⊥, then Γ,¬�ϕ � �ψ

For easier comparison with root SC-rules from Section 6.1.3 we formu-
lated all the rules in L�, but restoring them to generalized form covering
both modalities is straightforward; we leave it to the reader.

There is no problem with showing adequacy of our KM system for weak
basic logics. Proofs of axioms of respective logics is routine and simulation of
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rules (RE) and (RM) is direct with our proof construction rules – this yields
completeness. Soundness proof proceeds exactly as the proof of theorem
6.1.; we must only show:

Lemma 6.5 All proof construction rules introduced for weak basic logics
are normality preserving in suitable logics.

Proof We show as an example that [5M ] is normality preserving for M5
and leave the other cases to a reader. Assume that ¬�ϕ |= ψ but ¬�ϕ �|=
�ψ. Hence ‖¬�ϕ‖ ⊆ ‖ψ‖, and for some w, w � �ϕ and w � �ψ. So
‖ϕ‖ /∈ N (w) which, by condition (5) (cf. Section 5.4.5), implies that {w′ :
‖ϕ‖ /∈ N (w′)} ∈ N (w) which means that {w′ : w′

� �ϕ} ∈ N (w), which
means that ‖¬�ϕ‖ ∈ N (w). This claim together with ‖¬�ϕ‖ ⊆ ‖ψ‖ by
condition (m) yields ‖ψ‖ ∈ N (w). But then w � �ψ, a contradiction which
shows that ¬�ϕ |= �ψ.

6.6 First-Order Modal Logics

The area of nonaxiomatic formalizations of QML in general, and ND-
systems in particular, is not very rich. Fitting [93] provides some systems
but with rules for quantifiers borrowed from TS. Indrzejczak [139, 141] pro-
vides a characterization of many logics on the basis of KM, whereas Garson
[104, 105] offers solutions based on ND in Fitch’s format but with Gentzen’s
rule for elimination of ∃ and with parameters. In what follows we briefly de-
scribe in what way several versions of QML described in Chapter 5 may be
formalized on the basis of ND. From the plethora of ND variants described
in Section 2.7 we have chosen for our considerations only two approaches:
KM and KMGP (or KM’ and KMGP’ for free logic). This selection is justi-
fied by the fact that they seem to represent diametrically different solutions
of some specific questions, and lead to different behavior of the system when
modalities are added. In both cases we deal with F-systems based on Fitch’s
technique of strict subderivations, but it seems that proposed sets of rules
are rather format insensitive and one may combine them with other types
of ND systems for modal logics described in previous sections. Note that
KMGP and KMGP’ are equivalent to ND systems of [104, 105] in the sense
of results of interaction with added modalities.8 Our presentation follows

8Small differences concern the rule of ∀ introduction which is an inference rule in
[104, 105] but proof construction rule in KMGP, the formulation of rules for free logic,
and the fact that Garson does not apply KM apparatus of show-lines and boxes but Fitch’s
bars. Also Garson defines modal reiteration only for K and add axioms for extensions.
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strictly the order introduced in Chapter 5 and applies only to normal logics.

To obtain KM-QPL-L we must simply add to KM modal rules char-
acterizing L. That this solution yields logics characterized by monotonic
frames is evident since we may prove CBF in KM-QPL-K:

1 SHØW: �∀xAx→ ∀x�Ax [3, COND]
2 �∀xAx ass.
3 SHØW: ∀x�Ax [5, UNIV ]
4 �∀xAx (2, Reit.)
5 SHØW: �Ax [7, NEC]
6 ∀xAx (4, Reit(K))
7 Ax (6,∀E)

Clearly, if background modal logic is as strong as KB we have, by sym-
metry, systems characterized by frames with (locally) constant domains,
and BF is also provable:

1 SHØW: ∀x�Ax→ �∀xAx [3, COND]
2 ∀x�Ax ass.
3 SHØW: �∀xAx [5, NEC]
4 ♦∀x�Ax (2, Reit(B))
5 SHØW: ∀xAx [16, RED]
6 ¬∀xAx ass.
7 ∃x¬Ax (6,¬∀E)
8 ¬Ay (7,∃E)
9 ♦∀x�Ax (4, Reit.)
10 SHØW: �¬∀x�Ax [14, NEC]
11 ♦¬Ay (8, Reit(B))
12 ¬�Ay (11,¬�I)
13 ∃x¬�Ax (12,∃I)
14 ¬∀x�Ax (13,¬∀I)
15 ¬♦∀x�Ax (10,¬♦I)
16 ⊥ (9, 15,⊥I)

So in case of symmetric logics QPL-L=Q1-L; in other basic logics we must
add to KM-QPL-L either BF or an inference rule corresponding to this
axiom:

(BF ) ∀x�ϕ / �∀xϕ
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Hence KM corresponds exactly to axiomatic formalizations of QML
contrary to KMGP. Surprisingly enough we are not able to formalize QPL-
L on the basis of KMGP. One may easily prove not only CBF but also BF
in KMGP-K, so this version of ND is as strong as Q1 from the beginning.
Here is the proof of BF in KMGP-K:

1 SHØW: ∀x�Ax→ �∀xAx [4, COND]
2 ∀x�Ax ass.
3 �Aa (2,∀E)
4 SHØW: �∀xAx [6, NEC]
5 Aa (3, Reit(K))
6 SHØW: ∀xAx [7, UNIV ]
7 Aa (5, Reit.)

Note that the application of [UNIV ] in line 6 is correct since a is not
a parameter present in active assumptions although it is present above the
line 6. Proof of CBF in KMGP-K is an exact copy of such a proof in KM
but with a instead of x in lines 5 and 7.

Garson claims that the reason for provability of BF in his system, in con-
trast to axiomatic systems, is the fact that modal rules of ND are stronger
than K and (RG). But the fact that we are unable to prove BF in KM (with
modality weaker than B), despite having the same ND modal rules, shows
that it is rather a consequence of having more flexible rules for quantifiers.
In KM it is impossible to derive in line 3 �Ax and proceed like in the proof
above – because x is free above, S-formula in line 6 has no chance to be
proved. So crucial for this proof is the weaker requirement that universally
quantified variable (actually, corresponding parameter) should not be free
in active assumptions only.

It depends on our needs whether this feature of KMGP is felt as an
advantage or as a drawback. If QPL is treated as an artificial system, then
certainly KMGP is fine, otherwise KM seems to be better. In both cases
when identity is present we must add two inference rules (or just suitable
axioms) yielding rigidity of terms:

(LI) τ1 = τ2 / �(τ1 = τ2)
(LNI) τ1 �= τ2 / �(τ1 �= τ2)

The remaining logics require KM’ or KMGP’ as a basis since they are
all based on free logic.



220 CHAPTER 6. STANDARD APPROACH TO MODAL LOGICS

ND-QS-L is obtained by a combination of KM’ or KMGP’ with modal
rules QPL-L for suitable L. Similarly we obtain ND for G-L but with
suitable restrictions, both (F∀E) and (F∃I) must be weakened: in KM’
only variables, and in KMGP’ only parameters may be values of τ . The
logic F-L is obtainable just like G-L but E is counted as atomic. Finally,
Q1R-L without identity is just like QS-L, otherwise we must add (LI) and
(LNI); Eτ is counted as atomic.

In case of Q3-L we proceed as in case of G-L but in axiomatic formula-
tion also rules (G∀E), (G∀I) and (G = E) were needed. In this respect ND
formulations behave better in general but KMGP’ is the winer. Both gen-
eralized rules for ∀ are derivable in KMGP’, whereas in KM’ only the first
of them. We must add (G∀I) as a primitive rule to KM’-Q3-L although
such a solution is artificial. In contrast to KMGP’, in KM’ it cannot be
proved because of the similar reasons as with unprovability of BF in KM
and provability in KMGP. To secure completeness (G = E) must be added
to both ND systems for Q3-L but it may be simplified:

(G = E)′ � ϕ→ x �= τ / � ϕ→ ⊥

where x /∈ V F ({ϕ, τ})

It is easy to show that (G = E) is provable in KM’ (or KMGP’) with
(G = E)′.

Completeness of these ND systems follows easily from completeness of
respective ND systems for first-order logics and for propositional modal log-
ics. Soundness may be proved by combination of suitable proof for proposi-
tional modal logics with the result for ND systems for first-order logics from
Chapter 2. Clearly in case of KM or KM’ we must first make a transfor-
mation into KMG or KMG’ (cf. Chapter 2) but note that the presence of
[NEC] or [POS] does not harm to the proof of Lemma 2.3. We encourage
the reader to repeat soundness proof from Section 6.4.2 for various systems
enriched with rules for quantifiers.



Chapter 7

Beyond Basic Logics and
Standard Systems

This Chapter has a transitional character. We consider several ways of ex-
tending standard approach presented in the last Chapter and point out their
limitations. Section 7.1. is devoted to an application of standard approach
in ND to other modal logics. We discuss them in order of complications
they introduce into the structure of ND. Some systems are simulations of
solutions from SC or TS (Sections 7.1.2 and 7.1.3), whereas other were orig-
inally introduced for ND (7.1.1 and 7.1.5). In particular, some SC and TS
solutions, like that for monomodal logics of linear frames (Section 7.1.4)
cannot be simulated in ND. The last subsection shows that this problem
may be partly overcome if we deal with bimodal (temporal) logics of such
frames.

In the next two sections we focus on the limitations of standard ap-
proach. First, we consider utility of some sequent and tableau systems as
tools of proof-search; it requires some discussion of cut elimination, subfor-
mula property, confluency and similar properties. We rather avoid a discus-
sion of proof theoretic features of the rules, or metalogical properties like
completeness or applicability in proving decidability, interpolation and the
like. Nevertheless, some theoretical problems connected with redundancy
of standard ND, as presented in Chapter 6, are discussed in Section 7.3. In
general, this presentation of drawbacks and limitations of standard approach
is a natural starting point for search of a more suitable solutions.

The rest of the Chapter provides an exposition of some nonstandard
deductive systems. They have in common only one feature – the basic
apparatus of ordinary deductive system is substantially enriched (sometimes

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 221
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modified), so all of them may be called hybrid. We are not going to describe
all the known formalizations of modal logics; it is far beyond the scope of this
book. In short, we omit all these systems for which we could not recognize
a clear relationship to ND-systems in their ordinary or generalized form.
Criteria of selection and of grouping a material were described more strictly
in Introduction. In particular, one of the most popular method of extending
the basic formalism, by addition of labels, is not dealt with in this Chapter.
Since using labels is the only way of constructing nonstandard ND-systems
presented in this book, the technique itself deserves more attention and will
be discussed thoroughly in later chapters.

Section 7.4. introduces an extension of standard approach obtained by
combination with RND system from Chapter 4. We consider some variants
of such a formalization for basic modal logics and their limitations. The
last section is restricted to brief presentation of several variants of TS’s
utilizing some elements of Kripke semantics. The well known approach of
Kripke, and some of his successors, is presented first because it may be
seen as the first attempt to obtain a hybrid deductive system. More refined
ways of combining TS with relational semantics, like higher order systems
or trees with boxes, are discussed in the next subsections. Although these
systems cannot be simulated in ND (at least we don’t know how), they
offer some formalizations of linear temporal logics and their knowledge is
presupposed for understanding considerations from Chapter 9. Moreover,
Kashima system, introduced in Section 7.5.2, is particularly useful as a tool
of representation and comparison of several formalizations of linear logics.

7.1 Beyond Basic Normal Logics

Because in the preceding Chapter we have considered only a limited group
of modal logics for which the standard approach, and in particular Fitch’s
ND, works quite well, one may be interested in the real scope of appli-
cability of these techniques. Hawthorn [122] claimed that modification of
reiteration works well only for these modal logics which are axiomatizable
with the help of formulae of the kind μϕ → �δϕ, where μ and δ are finite
sequences of modal functors. It is not true however; e.g. in [140] we have
provided Fitch’s formalization based on the definition of Γ∗ for some tem-
poral logics axiomatized by formulae of different shape; we will introduce it
in Section 7.1.5. In fact, Fitch’s style ND may be reasonably extended if we
take under consideration some logics that were formalized on the ground of
TS or SC not only by modification of (πE), but with the help of additional
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special rules. In this section we will examine the extensions of Fitch’s for-
mat ND for some important modal logics. Some of them are based on the
simulation of rules borrowed from standard SC and TS, but there are also
solutions that were originally developed for ND (7.1.1 and 7.1.5).

7.1.1 Almost Basic Logics

In Chapter 5, for some axioms defining basic logics their boxed versions were
also introduced. They correspond to conditions where ordinary clauses of
reflexivity e.t.c. are delayed, in the sense that in rooted models, the origin
is not obliged to satisfy this condition. Some of them are important for
deontic interpretation. For example, �T may be treated as a definition of
a classical conception of justice due to stoics, as was noticed by Prior.

The solution we are to present has one strange feature. It is easy to for-
mulate some modifications on the level of realization in KM yielding correct
formalization of respective logics, but it is difficult to extend a calculus by
suitable rules. Note also that this solution is introduced for modal Fitch-
style ND and it is rather difficult to simulate it in the standard SC or TS.1

For example, to obtain the result of �T we may use the rule of delayed
� elimination:

(D�E): we may apply (�E) in a subderivation of k-degree, provided some
outer, open subderivation is strict

Similarly, for simulation of �D we must use a delayed version of (D).
For the rest of axioms of this kind (namely �4, �B) we must restrict suit-
ably reiteration rules since unboxed versions are provable by [NEC]. It is
sufficient to allow reiteration admissible for transitive and symmetric logics
only in case of strict subderivations which are inside some outer strict sub-
derivation. This kind of modification of KM introduces some complications
in the proof of soundness. It is not enough to make preliminary steps in
modifying proofs of lemmata 6.2 and 6.3 because there are no new rules
directly stated in the calculus. We must consider in our induction on the
depth of proof two cases of application of [NEC] or [POS]. We omit the
details.

1Although it is not impossible; it would require an addition of some global side condi-
tions on SC proofs to the effect that some rules are correctly applied only if some other
are used below them in the tree.
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7.1.2 Provability Logics

There are well known SC and TS formalizations of important provability
logics G, K4Grz and Grz. SC for these logics are due e.g. to Sambin [238].
Goré [117] considered the following rules of TS:

(G) �Γ,¬�ϕ
Γ,�Γ,¬ϕ,�ϕ (Grz) �Γ,¬�ϕ

Γ,�Γ,¬ϕ,�(ϕ→ �ϕ)

It is easily seen that these rules do not fall under simple schema of (πE),
where only a definition of Γ� regulates which logic is under consideration,
since in (G) and (Grz) we have additional formulae in conclusion. In case
of ND, a simulation of (G) and (Grz) is straightforward; we need only a
modification of [NEC]:

[NEC-G]: if νi, Γ� � ν, then Γ � νi

[NEC-Grz]: if �(ν → νi), Γ� � ν, then Γ / νi

In both cases Γ� is defined as for K4 (to get Grz we must also add (T )
and simplify definition Γ� as for S4), and the only difference with standard
[NEC] is the (optional) addition of modal assumption (νi or �(ν → νi))
at the beginning of a strict subproof starting with S-formula νi. So in the
definition of a derivation it is enough to add one more clause concerning
optional introduction of this modal assumption, in particular for G:

If the last show-formula is νi, then we may add νi as a modal assumption
of that derivation.

Similarly for Grz, but modal assumption is �(ν → νi). Checking that
such ND-system easily simulate TS proof-trees in these logics is straightfor-
ward.

7.1.3 Logics with Branching TS Rules

Goré [117] considered also the following rules of TS:

(R) Γ,¬�ϕ
Γ,¬�ϕ,¬ϕ | Γ,¬�ϕ,�¬�ϕ,ϕ

(S4F ) Δ,�Γ,¬�Θ,¬�ϕ
Δ,�Γ,¬�Θ,¬�ϕ,�¬�ϕ | �Γ,¬�Θ,¬�ϕ,¬ϕ

(S4.2) Γ,¬�ϕ
Γ,¬�ϕ,�¬�ϕ | Γ,¬�ϕ,�(¬�¬�ϕ)
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These rules when added to TS-S4, yield the formalization of some impor-
tant normal logics of epistemic or doxastic interpretation: S4R, S4F, S4.2.2

The characteristic feature of these rules is the introduction of branching, in
contrast to standard rules of (πE). Note that in (S4F ) the left conclusion
repeats all parametric formulae, but in the left one we have only transfer
of modal formulae. Let us call these conclusions normal and strict, respec-
tively; in (R) and (S4.2) both conclusions are normal. We have already
noticed in Section 6.5 that only branching rules with both strict conclusions
are difficult to simulate in Fitch’s format ND – it was just the case of modal
rules for congruent logics. So in these cases we may use the kind of simula-
tion described in Chapter 4. In particular, for (S4F ) we must display strict
conclusion as a strict subderivation, whereas normal conclusion corresponds
to the outer derivation and S-formula; in the rest of rules it is an arbitrary
choice. In this way we obtain three proof construction rules:

[POS-R]: if Γ, ♦ϕ, ϕ � ⊥, then Γ, ♦ϕ � �♦ϕ ∧ ¬ϕ

[NEC/POS-F ]: if Γ�, ♦ϕ, ϕ � ⊥, then Γ, ♦ϕ � �♦ϕ

[NEC/POS-2]: if Γ, ♦ϕ, �♦ϕ � ⊥, then Γ, ♦ϕ � �¬�♦ϕ

Note that Γ� in [NEC/POS-F ] is defined as for S5. We leave the
details of realization of these rules in KM noting only that in all of them we
introduce an additional assumption which is obtained by elimination of ♦
in first two cases and by addition of � to some ♦ϕ in the last one. One may
also observe that the technique we have used to simulate branching rules of
Goré leads to creation of other SC variants for S4R, S4F and S4.2 based
on nonbranching rules. If we a apply standard way of simulation (rules of
TS as reverses of SC rules), we get for, e.g., S4R the following rule:

(SC-R) Γ, ¬ϕ⇒ �ϕ Γ, ϕ, �¬�ϕ⇒ �ϕ
Γ ⇒ �ϕ

On the other hand, our proof construction rules lead to formulation of
the following SC rules:

(SC-R′) Γ, ¬�ϕ ⇒ ¬ϕ
Γ, ¬�ϕ ⇒ �¬�ϕ ∧ ¬ϕ

(SC-F′) Γ�, ♦ϕ,⇒ ¬ϕ
Γ, ♦ϕ ⇒ �♦ϕ

2In fact, to obtain a system for S4F we must add to TS-S4 both (S4.2) and (S4F ).
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(SC-2′) Γ, �¬�ϕ ⇒ �ϕ
Γ, ♦�¬�ϕ ⇒ �ϕ

These rules are provably equivalent to two-premise rules due to Goré,
on the basis of standard SC with cut.

7.1.4 Logics of Linear Frames

In standard SC and TS also some logics of linear frames were formalized.
One should recall here the works of Shimura and Goré: [252, 116, 117].
In both cases it is a realization of the same idea which for the first time
appeared in [288]. Linearity is obtained by means of a special version of
(⇒ �) in SC or π-rule in TS. For S4.3 it has the form:

(⇒ �3) �Γ ⇒ �Δ1, ϕ1 . . . �Γ ⇒ �Δn, ϕn
�Γ ⇒ �Δ

where: Δ = {ϕ1, . . . , ϕn},Δi = Δ − {ϕi}

Its counterpart in Hintikka style TS, given by Goré [116], looks as follows
(the meaning of Δ and Δi with no changes):

(¬�E3) �Γ,¬�Δ
�Γ,¬�Δ1,¬ϕ1 | . . . | �Γ,¬�Δn,¬ϕn

[117] contains also rules for other monomodal logics of linear frames as
K4.3 or S4.3.1. All of them are based on the same principle which will
be analyzed (and compared with other solutions) in Chapter 9. Additional
properties (or their lack) lead however to some modifications; e.g. in K4.3
the lack of reflexivity results in the following rule:

(¬�EK3) �Γ,¬�Δ
S1 | . . . | Sr

where: r = 2n − 1 ; Si = Γ,�Γ,¬�Δi,¬Δi;
Δ1, . . . ,Δr are all nonempty subsets of Δ, and Δi = Δ − Δi.

It is worth noting that the above solution differs considerably from the
strategy of extending SC and TS applied for basic modal logics or for logics
from the preceding subsection. Extensions are not obtained in a modular
way by addition of new ν-rules to formalizations of S4 or K4 but by re-
placement of the basic rule of elimination for π-formula by a new unique
rule of the same type.3 Another interesting feature of these rules is varying

3The same remark applies to formalizations of provability logics discussed above.
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number of branches. Note that in case we have only one π-formula to deal
with, they are reduced to ordinary (πE) rule for S4 or K4.

Presented rules, due to their many-branching character, cannot be sim-
ulated in Fitch’s style ND. We have noted in Section 6.5 that for many-
premise SC rules rather Gentzen’s tree-format ND is more suitable. But as
we already noted, in such ND we cannot realize Fitch’s approach based on
the use of modal reiteration rule. So, also in this case we have a problem
because reiteration is essential for the solution involved in the above rules.
One should conclude that in this case the possibility of easy transfer of re-
sults between SC TS, and ND is broken. It seems that there is no natural
and practically applicable way of simulation of SC rules for linear logics in
ND. But it does not mean that in ND such logics cannot be formalized at
all; we will provide different solutions – one of them in the next subsection.

We decided to describe this approach to formalization of linear logics,
despite their unfitness for ND, to complete the picture of standard approach.
Introduction of this solution is also important for later comparison of several
approaches to formalization of linear logics in Chapter 9. Finally, one may
note one unexpected advantage of presented rules. In contrast to other
standard SC (or TS) for modal logics, these systems are confluent. It is a
by-product of the shape of linear rules for π-formulae, since when applying
the rule we are not forced to choose one π-formula, but we are dealing
independently with all of them at once.

7.1.5 Temporal Logics

One may also extend Fitch’s approach to multimodal logics. In particular,
we may obtain a formalization of quite extensive range of temporal logics
(see Indrzejczak [140]). Interestingly enough, on the field of standard SC’s
or TS’s there were no many proposals of this sort; Nishimura [195] provided
SC for Kt4 i Kt4D. We slightly change formulation of his rules putting
them in a Fitting-like generalized form:

(⇒ νi) Γ� ⇒ Δ�, ν
Γ ⇒ Δ, νi

(πi ⇒) π,Γ� ⇒ Δ�

πi,Γ ⇒ Δ

where Γ� = {ν : νi ∈ Γ} ∪ {νi : νi ∈ Γ} ∪ {πj : π ∈ Γ}, Δ� = {π : πi ∈
Δ} ∪ {πi : πi ∈ Δ} ∪ {νj : ν ∈ Δ}, and i �= j ∈ {F, P}. For Kt and KtD
it is sufficient to get rid of the middle component of the union. One should
note that both i and j are present in the definitions to cover the effect of
interplay of past and future.
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Probably the lack of SC or TS formalizations for other temporal logics
is connected with the fact that all of them are in a sense symmetrical (there
is a symmetry of future and past flow of time), and already on the ground
of monomodal symmetric logics there were enough troubles with finding
satisfying solutions. We say more about it in the next section. But if
we are interested just in making proofs, not necessarily analytic, but just
easy to follow, it is not a real problem. In particular, we can obtain ND
formalization of some linear temporal logics. It is in contrast to the negative
result of the preceding subsection, where we stated that SC and TS rules
for monomodal linear logics are not possible to simulate on the ground of
ND. On the other hand, bimodal linearity is formalizable in standard ND
and may be simulated by standard SC or TS. We will present a solution
from [140].

For the sake of simplicity we again treat P and F as definitional shortcuts
and provide a system based on [NEC], but one may easily define temporal
analog of [POS]. Here we need in fact two rules: [NEC(H)] and [NEC(G)],
for H and G respectively, but both are covered by just one schema being
an exact copy of [NEC] provided for monomodal logics in Section 6.3. The
definition of Γ� for Kt, KtD, Kt4, Kt4D was stated above. A simple
example of proof of Kt-thesis will help to understand how it works:

1 SHØW: GHGp→ Gp [3, COND]
2 GHGp ass.
3 SHØW: Gp [12, RED]
4 ¬Gp ass.
5 GHGp (2, Reit.)
6 SHØW: Gp [11, NEC(G)]
7 P¬Gp (4, Reit(Kt))
8 HGp (5, Reit(Kt))
9 ¬HGp (7,by def.)
10 ⊥ (8, 9,⊥I)
11 p (10,⊥E)
12 ⊥ (4, 6,⊥I)

Note two (Kt-admissible) applications of temporal reiteration in lines
7 and 8; one is like in symmetric logics (with addition of possibility-like
operator but of different modality than actual S-formula) whereas the second
is just like in K – by deletion of necessity-like operator (of the same modality
as S-formula).

In order to obtain a system for Kt4.3 or KtD4.3 we must add to Γ�
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yet another set: {νj : {ν, νi, νj} ⊆ Γ}. Perhaps it will be easier to see what
kind of formulae one may move by reiteration into strict subderivation, if
we put it in other words. Let Hϕ be the current S-formula and Γ the set of
all U-formulae above, then we can put into the strict subderivation initiated
by Hϕ, every ψ which satisfies at least one of the conditions:

• Hψ ∈ Γ (usual modal reiteration)

• ψ = Hχ and ψ ∈ Γ (by transitivity)

• ψ = Fχ and χ ∈ Γ (by symmetry of past and future)

• ψ = Gχ and {χ,Hχ,Gχ} ⊆ Γ (by linearity)

Clearly, for S-formula Gϕ we take duals. One may easily check that proofs of
temporal axioms LF and LP are straightforward. But we may also obtain
proofs of other axioms applied for linearity, and it is much easier than
proving their equivalence with LP and LF in axiomatic system. Below we
display a proof of one temporal form of L as an example:

1 SHØW: G(Gp ∧ p→ q) ∨G(Gq ∧ q → p) [3, COND]
2 ¬G(Gp ∧ p→ q) ass.
3 SHØW: G(Gq ∧ q → p) [5, NEC(G)]
4 P¬G(Gp ∧ p→ q) (2, Reit(Kt))
5 SHØW: Gq ∧ q → p [22, RED]
6 ¬(Gq ∧ q → p) ass.
7 Gq ∧ q (6, αE)
8 ¬p (6, αE)
9 Gq (7, αE)
10 q (7, αE)
11 Gp ∧ p→ q (10, βI)
12 SHØW: H(Gp ∧ p→ q) [15, NEC(H)]
13 ¬Gp (8, Reit(Kt))
14 ¬(Gp ∧ p) (13, βI)
15 Gp ∧ p→ q (14, βI)
16 SHØW: G(Gp ∧ p→ q) [18, NEC(G)]
17 q (9, Reit(Kt))
18 Gp ∧ p→ q (17, βI)
19 SHØW: ¬P¬G(Gp ∧ p→ q) [20, NEC(H)]
20 G(Gp ∧ p→ q) (11, 12, 16, Reit(Kt4.3))
21 P¬(Gp ∧ p→ q) (4, Reit)
22 ⊥ (19, 21,⊥I)
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Note the crucial application of reiteration for Kt4.3 in line 20.

The above proof is sufficient for demonstration of completeness of this
formalization for linear temporal logics since proofs of other axioms is rou-
tine and two forms of temporal (RG) are simulated exactly as in monomodal
case. The proof of soundness is an exact copy of a proof from Section 6.4,
we need only to show that both versions of [NEC] with Γ∗ defined as above
are normality preserving with respect to linear frames. We leave it to the
reader or advice to consult [140].

7.2 Limitations of Standard Approach

The overall picture of the results from the preceding, and this Chapter,
may look quite nice. After all, surveys like that of Goré [117](or even much
earlier Zeman’s work [288]) show that a lot of logics can be formalized with
the help of tableaux or sequent calculi. So, despite the discussed limitation
(e.g. transfer of multibranching rules into the context of Jaśkowski’s format
ND), one may think that standard approach is really extensive and provides
a uniform syntactic frame for characterization of many logics. But it is easily
seen that many of the systems are based on rather artificial solutions that
are incompatible with the most natural requirements concerning practically
useful tableau or sequent calculi.

Generally, the schema for construction of new SC, TS or ND (in Fitch’s
style) system for many logics is similar; we keep a constant rule (⇒ �) (or
(πE) or [NEC]) and modify only Γ�. In some cases it looks pretty, but a
definition of this set in many cases is not satisfactory and seems to be an
ad hoc construction. Moreover, for many logics (e.g. provability and linear
logics) we must either replace old rules by the new ones or to introduce
additional rules of a different shape. So the architecture of the system
is somewhat broken and one may conclude that these standard systems
which may be seen as simple and natural, are rather formalizations of some
particular logics, but their generalizations are often not easy to provide.
Standard approach in TS and ND is also format sensitive since, in TS we
presuppose Hintikka format (sets as data structures), in ND we must have
subproofs – at least strict ones.

So it must be said that standard approach to formalization of modal log-
ics is hardly recognized as a uniform syntactic frame comparable in scope
to successful semantic framework provided by relational models. It is par-
ticularly evident if we search for a system having satisfactory properties.
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Already Sambin and Valentini [239] have noted in the context of modal SC:

It is usually not difficult to choose suitable rules for each modal
logic if one is content with completeness of rules. The real prob-
lem however is to find a set of rules also satisfying the subformula
property.

This remark applies equally well to other features usually required in case
of SC or TS. Here, we are concerned neither with philosophical questions nor
with theoretical investigations from proof theory, but rather pay attention
to practical matters connected with proof search. Hence we will discuss only
some chosen properties and address an interested reader to other sources of
information. One may find an extensive discussion of these matters in the
context of philosophy of meaning involved in the construction of ordinary
SC in Poggiolesi [214]. Exhaustive criticism of ordinary modal SC from
the point of view of proof theory is provided by Wansing [280]. He shows
that modal rules in standard SC usually lack many structural properties,
that are actual source of success of SC as a tool of proof analysis. But one
should note that at least one point from Wansing’s list of complaints may be
partly dispelled. SC for congruent and monotonic basic logics presented in
Chapter 6 is modular, in contrast to standard SC systems for normal logics.
Moreover, one may obtain modular regular and normal SC’s on the basis
of weaker systems, just by addition of rule (C) or (C-3) (cf. Section 6.1.3).
But it is doubtful if such a solution is better for practical applications.

One of the central issue is certainly cut elimination. We recall the results
for basic logics:

Theorem 7.1 Cut elimination holds for the following SC’s for basic logics:

• in the class of normal logics: K, D, T, K4, D4, S4, K45, KD45;
the same holds for discussed regular counterparts

• in the class of monotonic logics: M, MD, MT, M4, M5, MT4,
MD4, M45, MD45; the same holds for respective monotonic logics
with (N)

• in the class of congruent logics: E, ED, ET, E5, ET4; the same
holds for respective congruent logics with (N) except END

In the first group most of the results are due to Ohnishi/Matsumoto [197,
197] and Zeman [288]; the last two come from Shvarts [253]. Results for
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weak logics are provided by Indrzejczak in [152]. It is quite surprising that
both E5 and M5 (and their N-counterparts) have cut-free formalization in
contrast to K5. On the other hand, neither ED5 nor MD5 (and their
N-counterparts) have cut-free formalization, similarly as KD5. In general,
cut elimination fails for all B-logics, but in case of congruent logics we have
a similar situation with 4-logics (the exception is ET4 and ENT4). It
is easy to note that congruent logics represent very bad behaviour with
respect to cut elimination, in contrast to monotonic logics, that are even
better than normal logics. But one should note that standard SC for MD4
and MD45 as presented in Section 6.1.3 is not suitable for that. To prove
cut elimination one needs additional two rules:

(D5) ϕ⇒ �ψ
�ϕ⇒ �ψ (D4) ϕ, �ψ ⇒

�ϕ, �ψ ⇒

Thus cut-free SC’-MD4 is SC-MD4 with (D4), whereas cut-free SC’-
MD45 is SC-MD45 with (D5). Both rules are provable in generic SC’s,
but their addition is necessary for proof of cut elimination. Many other
normal logics were proved to be cut-free as well, in particular all SC (TS)
systems presented in Sections 7.1.2, 7.1.3, and 7.1.4.

Although in many cases cut is not eliminable, it is not necessary a dis-
aster. We have already mentioned that admissibility of cut is neither suf-
ficient nor necessary for obtaining an analytic formalization. Takano [269]
proposed SC formalizations with analytic cut for all normal B-logics, and
(in [270]) for K5 and KD5 with cut restricted to applications with modi-
fied subformula property. Rautenberg [229] and Goré [117] proposed TS’s
for these logics with additional rules simulating special applications of cut
and satisfying the “superformula”-property; details may be found in [117].
All these solutions are meant to overcome problems generated by semantics
of symmetric and Euclidean logics. From the semantical point of view one
must have a possibility to come back, from one world to its predecessor,
but standard SC or TS is a system admitting only forward moves. Hence
special applications of cut or additional rules are devised to keep or to rein-
troduce some essential information from the predecessor which may be lost
otherwise. One should note that we have the same situation in bimodal
temporal logics, and probably this is the main reason that these logics were
rarely formalized as standard SC’s or TS’.

So analycity is somewhat saved, but even in case of cut-free systems
we have a defect which, from the point of view of automation, is rather
troublesome. Let us focus on some characteristic feature of modal rules
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considered above (i.e. (⇒ �), (♦ ⇒) and the like). In general, such rules
lead to a loss of a part of information and/or a modification of the rest. It is
due to the fact that there is a “narrow gate” leading from the conclusion to
the premise(s). Only some parametric formulae, and usually after deleting
of modal functors, are released. In case of congruent and monotonic logic
this “gate” is even narrower – we admit exactly one parametric formula.
Fitting called systems with such rules “destructive”, since some information
is lost or destroyed. Such rules belong to the wider category of rules that
are not pure (in Avron’s terminology), where purity means that if from a
sequent (or sequents) S a sequent S′ is derivable, then it holds also if some
formulae are added in the antecedent or in the succedent of premise(s) and
conclusion. Clearly, every destructive rule is not pure in this sense.

These features of modal SC rules have an important impact on some
properties of the calculi. First of all, invertibility of all rules is lost, because
either weakening as a rule is necessary (if we have rules like (⇒ �)) or its
effect is implicitly given in formulation of rules like generalized Fitting’s
(⇒ �′). Also, considered systems are in general not confluent, and we may
be forced to backtracking during proof search process. In other words, if
we finish some branch with nonaxiomatic but atomic leaf, it does not mean
that the root-sequent is nonprovable, perhaps some other routes may lead
to success. It may be conveniently illustrated with the help of typical (πE)
application. Assume that we are at the stage of proof-search where no other
rule is applicable, but we have two π-formulae in the current set. We may
apply the rule only to one of them, the other is erased because usually it
does not belong to Γ�. If we later obtain finished and open branch, it is
not enough to build a falsifying model for an input-formula since, in such a
model, every π-formula must be satisfied at some point and we do not know
if our abandoned π-formula really is.

As an example we may consider a thesis of K ♦p ∧♦(q → r) → (�q →
♦r). In tableau proof-tree, after negation of the formula and some standard
transformations we obtain a set Γ = {♦p,�q,♦(q → r),¬♦r}. If we apply
(πE) to the first π-formula from the left we will get a set {p, q,¬r}, and
the branch finishes as open. But if this rule will be applied to the second
π-formula we obtain {q → r, q,¬r}, and this set is not satisfiable – since
after application of β-rule we immediately obtain two closed branches. So
in one case we do not obtain a proof, whereas in the second we do.

To avoid such problems we must have a possibility to go back to the last
stage, where (πE) was applied and try again with it. Several solutions were
proposed to the effect that backtracking is somewhat formally secured. For
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example, Goré proposed modified rule of the form:

(πE′) Γ, πi
Γ�, π ‖ Γ

Branching displayed with ‖ has a different character than in β-rules
or cut; there we have disjunctive branching (premise-set is satisfiable, if at
least one conclusion-set is), here it is conjunctive (both conclusion-sets must
be satisfied).4 Other solution, from [142], consists in recursive embedding
of the definition of proof tree in the definition of proof-search tree. The
simplest solution does not affect a calculus but introduces some meta-rule
into definition of proof-search procedure. It was applied e.g. by Sambin
[238]); also a decision algorithm for basic monotonic logics sketched in [152]
is based on such a meta-rule of Subtree Generation (SG).

(SG) SL
Γ, �ϕ1, ...,�ϕl ⇒ �ψ1, ...,�ψk, Δ

where, l+ k > 0,Γ,Δ are atomic formulae, and SL is not a sequent but the
set of sequents called subproof generators. These are defined for each logic
having cut-free formalization from characteristic sets of sequents:

SM = {ϕi ⇒ ψj : i ≤ l, j ≤ k}

S4 = {�ϕi ⇒ ψj : i ≤ l, j ≤ k}

S5 = {⇒ �ψi, ψj : i ≤ k, j ≤ k}

SD = {ϕi, ϕj ⇒ : i ≤ l, j ≤ l}

SD5 = {ϕi ⇒ �ψj : i ≤ l, j ≤ k}

SD4 = {ϕi, �ϕj ⇒ : i ≤ l, j ≤ l}

These combine into the following sets:

4It seems that the first who introduced trees with two types of branching was Beth
[28] in TS for intuitionistic logic.
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Logic SL
M, MT SM
MD SM ∪ SD
M4, MT4 SM ∪ S4

M5 SM ∪ S5

MD4 SM ∪ SD ∪ S4 ∪ SD4

M45 SM ∪ S4 ∪ S5

MD45 SM ∪ SD ∪ S4 ∪ S5 ∪ SD4 ∪ SD5

But one should recall that at least Shimura/Zeman SC for S4.3 (as well
as Goré variants for other linear logics) is confluent! Its characteristic rule
creates as many premises as we have �-formulae in the succedent of a con-
clusion. In this respect it is apparently similar to our meta-rule (SG), but in
this case it is the same kind of branching like in β-rules. SC rules for linear
logics are still destructive and impure, due to side conditions concerning the
antecedent of conclusion-sequent, but nevertheless confluency is saved.

There is one more problem connected with proof-search procedures de-
fined for standard calculi. The risk of loop-generation leading to infinite
branches. It is connected with the fact that some of the rules involved, e.g.
for transitive logics do not satisfy subformula property in the strict sense
(some formulae are rewritten to premise). It should be noticed that in this
respect monotonic logics also reveal better behaviour than normal logics.
The procedure based on the application of (SG) described above, leads to
termination even in case of such 4-logics like M4, MT4, MN4 and MNT4.
It is well known fact that in procedures defined on SC or TS for normal (or
regular) 4-logics we can generate infinite branches due to duplication of �-
formulae. But in case of monotonic logics this problem disappears since no
such formula is transported at the same time with a box and without it to
the premise. For example, instead of �ϕ, ϕ⇒ ψ from some �ϕ⇒ �ψ in
SC for K4, in M4 we may only obtain either �ϕ ⇒ ψ by (4), or ϕ ⇒ ψ
by (M) which blocks generation of loops. Nevertheless, the problem of pos-
sibly infinite branches reappears in case of these calculi that contain (5)
or (D4) (namely: M5, M45, MD4, MD45, MN5, MN45, MND4 and
MND45).5 It is possible because two elements in premises of (5) and (D4)
may be the same formula. In such a situation from �ϕ,�ϕ ⇒ (= �ϕ ⇒)
we may deduce by (D4) �ϕ, ϕ ⇒ and then do it again. Fortunately, such
loops are extremely easy to detect and we can obtain termination anyway.

5In [152] it was noticed only for SC with (D4).
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All these problems must have reappear if we would like to use Fitch-style
ND for modal logics as a tool for proof search, and practical decision pro-
cedure. This kind of formalization, similarly as standard ND for classical
logics, is not universal, but it is harder to obtain an analytic version of ND
for modal logics, than for CPL. Clearly, for ND the lack of cut-elimination
for some logics is not a problem, as we have shown in Chapter 4, but still
other features may cause problems. For example, how to deal with non-
confluency? It would be necessary to have some devices for flagging some
strict subderivation as failed (if, e.g., the set of respective U-formulae is
downward saturated but consistent), perhaps boxing without cancelation
of prefix “SHOW:”? In this way we could mark this part of a proof as
unsuccessful, and try different choices. So it seems that due to eventual
complications in the definition of a derivation, standard ND are not very
good candidates for providing analytic systems. Implementation of such a
system would require even more complicated work. Hence we may certainly
build more natural, shorter and simpler proofs in ND than in Hilbert sys-
tems but the possibility of using such systems as decision procedures or in
automated deduction, is an open question. We are afraid that the prospects
are not very promising, and labelled systems, that will be introduced in the
subsequent chapters, are much better prepared for such tasks.

7.3 Redundancy of Standard Systems

Before we go on with some alternatives to standard systems we focus on
some theoretical problems connected with redundancy of Fitch’s format
ND. It may be skipped by readers interested mainly in practical aspects of
its application. We have already mentioned that Fitting’s style formulation
is redundant, but even the system of Fitch in the original formulation (cf.
Section 6.4.1) is redundant. First, the primitive introduction/elimination
rules for � and ♦ are not independent. Second, it is interesting whether
definitional rules are necessary for completeness.

7.3.1 Admissibility of Proof Construction Rules

We start with the first problem. For Fitch’s rules (�E) and (♦I) the situa-
tion is clear. The first is just (T ) and the second its contrapositive modulo
interdefinability of ♦ and �. They are normal rules only in logics axiom-
atizable by T so for weaker logics we do not have in general rules of this
kind. As we noted, some authors prefer to treat basic modal reiteration as
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a kind of � elimination rule. Another possibility is to use some generalized
forms of � elimination as defined in Remark 6.5; we may easily define their
counterparts for ♦ introduction. Anyway, all these rules are interderivable;
in particular (T ) is provable in the system with (¬�I), and (♦I) is provable
in the system with (¬♦E).

What is more interesting, also [NEC] and [POS] are in fact mutually
dependent, although not, in general, interderivable – for that we need to
replace Fitch’s [POS] with Fitting’s [⊥]F . We have already mentioned
this fact, when discussing Fitting’s two systems; one may easily prove all
necessary axioms and rules for himself either in A- or in I-system. But it is
of some interest in itself to show that in the full system they are eliminable.
For [NEC] and [POS] we can prove the following lemma:

Lemma 7.1 (Admissibility of rules)

1. [POS] is admissible in CPL+[NEC] + (¬♦E)+(¬♦I)

2. Regular-[NEC] is admissible in CPL+[POS] + (¬�E)+(¬�I)

where Regular-[NEC] means [NEC] with proviso for regular logics (cf.
Section 6.3).

Proof it is provided by the following schemata of elimination. Every part
of a proof containing an application of [POS] of the shape:

...
i− j Γ
j + 1 ♦ψ

...
k SHØW: ♦ϕ [n, POS]
k + 1 ψ mod.ass(j + 1)
(k + 2) − l Γ� (i− j, Reit.)

...
n ϕ

may be recursively (starting with the innermost application of [POS]) re-
placed by the following:
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...
i− j Γ
j + 1 ♦ψ

...
k SHØW: ♦ϕ [o+ 4, RED]
k + 1 ¬♦ϕ ass.
k + 2 �¬ϕ (k + 1,¬♦E)
k + 3 ♦ψ (j + 1, Reit.)
(k + 4) − l Γ (i− j, Reit.)
l + 1 SHØW: �¬ψ [m+ 2, NEC]
(l + 2) −m Γ� (k + 4 − l, Reit.)
m+ 1 ¬ϕ (k + 2, Reit.)
m+ 2 SHØW: ¬ψ [o+ 2, RED]
m+ 3 ψ ass.
(m+ 4) − n Γ� (l + 2 −m,Reit.)

...
o ϕ by assumed proof
o+ 1 ¬ϕ (m+ 1, Reit.)
o+ 2 ⊥ (o, o+ 1,⊥I)
o+ 3 ¬♦ψ (l + 1,¬♦I)
o+ 4 ⊥ (k + 3, o+ 3,⊥I)

similarly, every application of [NEC] admissible in every regular logic, of
the shape:

...
i− j Γ
j + 1 �ψ

...
k SHØW: �ϕ [n,NEC]
(k + 1) − l Γ� (i− (j + 1), Reit.)

...
n ϕ

may be replaced by:



7.3. REDUNDANCY OF STANDARD SYSTEMS 239

...
i− j Γ
j + 1 �ψ

...
k SHØW: �ϕ [n+ 4, RED]
k + 1 ¬�ϕ ass.
k + 2 ♦¬ϕ (k + 1,¬�E)
(k + 3) − l Γ (i− j, Reit.)
l + 1 SHØW: ♦¬ψ [m+ 1, POS]
l + 2 ¬ϕ mod.ass(k + 2)
(l + 3) −m Γ� (k + 3 − l, Reit.)
m+ 1 SHØW: ¬ψ [o+ 1, RED]
m+ 2 ψ ass.
m+ 3 ¬ϕ (l + 2, Reit.)
(m+ 4) − n Γ� (l + 3 −m,Reit.)

...
o ϕ by assumed proof
o+ 1 ⊥ (m+ 3, o,⊥I)
o+ 2 ¬�ψ (l + 1,¬�I)
o+ 3 �ψ (j + 1, Reit.)
n+ 4 ⊥ (o+ 2, o+ 3,⊥I)

One may easily check that these proofs of elimination hold also for mono-
tonic versions of respective proof construction rules, namely for [NECM ]
and [POSM ]. In the first case it is enough to delete all occurrences of Γ�

in both schemata and change the justification of line m + 1 (in the second
schema) from reiteration into modal assumption. In the second case we
must in the schema of eliminated subproof change Γ� into ψ justified as
modal assumption and delete occurrences of Γ� in the second schema.

It is evident that [NEC] and [POS] are equivalent in regular logics
(and monotonic as well); [POS] in itself is too weak to capture in ND
the effect of (RG) – we must have some �-formula in outer proof (here it
is �ψ in line j + 1 which is essential to close the replacing proof). But
we can use a variant (in fact two variants) of [POS] which is sufficiently
strong for keeping equivalence also in normal logics. We have already (in
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Section 6.4.3) introduced the rule [⊥]F due to Fitting [93] (it is displayed
below for convenience); earlier Wisdome [282] proposed a rule [⊥]W :

[⊥]W if Γ�, ψ � ⊥, then Γ,♦ψ � ϕ

[⊥]F if Γ�, ψ � ⊥, then Γ,♦ψ � ⊥

Both variants are equivalent; [⊥]W follows from [⊥]F in CPL, and the
latter is a particular form of [⊥]W , hence we will simply use the name [⊥]
for any of them. The equivalence of logics formalized with [NEC] or with
[⊥] is stated in the next lemma:

Lemma 7.2 (Admissibility of rules)

1. [⊥] is admissible in CPL+[NEC] + (¬♦I)

2. [NEC] is admissible in CPL+[⊥] + (¬�E)

Proof by similar schemata as in the previous lemma.

So there is no need to modify [POS] in regular logics or [POSM ] in
monotonic logics to obtain systems equivalent with formalizations based on
[NEC] (or [NECM ]) but for normal logics we should rather use [⊥] instead
of [POS].

Remark 7.1 Note that one may keep a uniform formalization of monotonic,
regular and normal logics based on [POS] but at the expense of addition
of one more inference rule to every normal logic: (♦⊥) ♦⊥ / ⊥. This rule
is not normal in weaker logics but in normal logics it saves completeness of
I-formulations because we may prove ♦⊥ by [POS] with ϕ = ⊥ and then
apply (♦⊥) to obtain the effect of [⊥]. ♣

Remark 7.2 In case of normal logic D and its extensions there is no need to
add modal assumption in the strict derivation initiated by [POS], because
in D we have admissible rule:

if Γ� � ψ, then Γ � ♦ψ.

Hence, it is possible in all extensions of D to simplify [POS], making
an introduction of modal assumption an optional element, similarly as with
assumptions for [COND] and [RED]. Moreover, it enables to obtain an
adequate formalization for D, without any special rule of inference such as
(D), which is now simply derivable. If we admit such a simplification in
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the definition of [POS] on the ground of regular logics we must add similar
proviso as in the case of the definition of [NEC] in them, namely that in
the outer derivation at least one U-formula should be ν-formula. ♣

7.3.2 Interdefinability Problem

The second question we want to consider is whether definitional rules are
necessary. One may check that although the system is redundant, the rules
for introduction and elimination of � and ♦ are not enough for complete-
ness. We cannot get rid of all definitional rules, but we may use only some
of them because they are interderivable in the following way:

Lemma 7.3 (Derivability of rules)

1. (¬♦E) is derivable in CPL+[POSM ]+(¬�E)

2. (¬♦I) is derivable in CPL+[POSM ]+(¬�I)

3. (¬�E) is derivable in CPL+[NECM ]+(¬♦E)

4. (¬�I) is derivable in CPL+[NECM ]+(¬♦I)

5. (¬�I) and (¬♦I) are derivable in CPL+[⊥]

Proof we will provide schemata of derivations justifying 1., 4. and one of
5.; for remaining cases proofs are analogous.

1 ¬♦ϕ premise
2 SHØW: �¬ϕ [9, RED]
3 ¬�¬ϕ ass.
4 ♦¬¬ϕ (3,¬�E)
5 SHØW: ♦ϕ [7, POSM ]
6 ¬¬ϕ mod.ass(4)
7 ϕ (6,¬¬)
8 ¬♦ϕ (1, Reit.)
9 ⊥ (5, 8,⊥I)
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1 ♦¬ϕ premise
2 SHØW: ¬�ϕ [9, RED]
3 �ϕ ass.
4 ♦¬ϕ (1, Reit.)
5 SHØW: �¬¬ϕ [7, NECM ]
6 ϕ mod.ass(3)
7 ¬¬ϕ (6,¬¬)
8 ¬♦¬ϕ (5,¬♦I)
9 ⊥ (4, 8,⊥I)

1 ♦¬ϕ premise
2 SHØW: ¬�ϕ [5, RED]
3 �ϕ ass.
4 ♦¬ϕ (1, Reit.)
5 SHØW: ⊥ [8,⊥]
6 ¬ϕ mod.ass(4)
7 ϕ (3, Reit(R))
8 ⊥ (6, 7,⊥I))

Note that although we provided proofs of 1. and 4. in KM-M they are
correct also for regular and normal logics. We must simply change in both
proof-schemata a justification of some lines. In the former we use [POS] in
line 5, in the latter [NEC] in line 5 and line 6 is not a modal assumption but
an application of (Reit(K)) or (Reit(R)) from line 3. On the other hand
point 5. of Lemma 7.3. holds only for regular and normal logics because
the use of modal reiteration is essential.

The following observation is a simple consequence of this lemma:

• KM for any monotonic, regular, normal logic based on [NEC] requires
(¬♦I) and (¬♦E)

• KM for any monotonic, regular, normal logic based on [POS] requires
(¬�I) and (¬�E)

• KM for any monotonic, regular, normal logic based on [NEC] and
[POS] requires (¬�I) and (¬♦E), or (¬�E) and (¬♦I), or (¬�I)
and (¬♦I), or (¬�E) and (¬♦E)
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• KM for any regular, normal logic based on [⊥] requires (¬♦E) and
(¬�E)

• KM for any regular, normal logic based on [NEC] and [⊥] requires
(¬♦E)

The last point is worth noting. Using both [⊥] and [NEC] as primitive rules
of the system makes only one definitional rule necessary. One may check that
elimination of this one rule is impossible however. It was proved as derivable
by [POS] (see point 1. in the proof above) so one may think that it should be
provable by stronger rule as well. But if we try to eliminate [POS] in favor of
[⊥] in the way shown in the preceding subsection, we find that (¬♦E) must
be used in replacing proof schema. So either we must add this rule or [POS]
to the basis. This shows some inherent asymmetry in the construction
of the analyzed rules, similarly as in standard SC modal rules. It seems
that the problem is solved in a satisfying way only in deductive systems
of nonstandard character, where radical enrichment of the basic structural
tools makes possible greater flexibility e.g. like in display logic (see [280])
or in multisequential sequent calculus (see [143]). In standard ND these
rules are (trivially) derivable only if we adopt a generalized terminology of
Fitting, at least with respect to definition of formulae admissible for modal
reiteration. Otherwise at least one definitional rule is necessary.

It seems that if we prefer a formulation with ♦ as primitive (and perhaps
the only modal functor), [⊥] is a better choice. It is not only stronger than
[POS] and, in consequence, more universal (covers also normal logics as a
sufficient rule, whereas [POS] is adequate only for weaker logics), but also
more economical if [NEC] is present. The drawback of such a system is
that [⊥] is not a good representative of a modal rule, which is particularly
evident in KM, where it looks like a kind of indirect proof. Only the rule
of introduction of modal assumption has some flavor of a modal rule but
it is independent of [⊥], at least on the level of realization. On the other
hand, in the system like AND1, where (analytic) [RED] is the only proof
construction rule, the addition of [⊥] fits nicely in contrast to [NEC]. Such
a version of modal AND1 with [⊥] as the only additional proof construction
rule would be better prepared to simulate proof-search strategies from modal
tableau systems. Still, the problems connected with nonconfluency and
backtracking, discussed in the preceding section, remain.

Remark 7.3 One should notice that, at least with respect to some stronger
normal logics, like S4 or S5, we may obtain a formalization based on some
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variant of [POS] instead of [⊥]. It may be of some interest for those who
look for a rule better suited as a representative of the basic rule for ♦.
System of this sort for S5 is present in Hazen [123]; slight modifications
make possible to obtain a system for S4. In a system for S5, we admit that
reiteration in strict derivations is limited to m-formulae, [NEC] is in the
standard form and [POS] is based on the following rule:

if Γ�, ψ / ϕ, then Γ,♦ψ / ϕ, where ϕ is any m-formula

A variant for S4 is similar but reiteration in case of [NEC] and [POS]
is restricted to ν-formulae and ϕ in the schema of [POS] must be any
π-formula. Definitional rules are dispensable in both systems if we use
generalized notation of Fitting. If we restrict, e.g. in S4, reiteration to
�-formulae and ϕ in the schema of new [POS] to ♦-formulae, then some
definitional rules are necessary. It is left to the reader to establish which
ones. ♣

7.4 RND for Modal Logics

In the search for alternative, and perhaps more satisfying, systems we first
consider RND introduced in Chapter 4. We have already mentioned that
among a few approaches to modal logics in ND, the Fitch’s format seems to
be the most extensive, so we consider only a combination of RND with this
approach. Fortunately we can refine the Fitch’s technique to comply with
RND – we sketch such a modification in this section.

7.4.1 RND Systems for M, R and K

We start with a definition of a system adequate for the weakest logic in each
group (except congruent logics), then we discuss how to obtain extensions.
Clearly we must introduce the category of strict derivations and to block
unrestricted transfer of formulae into them. Technically it is executed as
in ordinary ND, by reiteration rule that specifies what kind of formulae are
admissible for transfer. In the formulation of RND from Chapter 4 we did
not refer explicitly to reiteration rule because we admitted, in the definition
of a derivation, that we can use any U-formula in the current subderivation.
In Fitch’s approach it is necessary to introduce reiteration explicitly. So in
general, modal RND follows quite closely ordinary Fitch’s ND. There is one
important cost on the side of simplicity of RND – one proof construction
rule is not enough to govern two types of derivation. Except [SUB] we must
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add specific modal proof construction rules. Let us consider two additional
proof construction rules being clausal variants of modal rules [NEC] and
[POS]. First we define simpler variants suitable for RND-M:

[CNECM ] if Υ1 � ν, then Γ,Υi
1 � Γ,Υi

2, provided ν ∈ Υ2

[CPOSM ] if Π1 � π, then Γ,Πi
1 � Γ,Πi

2, provided π ∈ Π2

Remember (cf. Chapter 5) that Υi denotes any clause containing only ν-
formulae (of i-modality in multimodal case), whereas Πi – only π-formulae.
Υ and Π are sets obtained by deletion of the first modal operator in every
element of Υi,Πi. Γ,Υi is a clause, where except ν-formulae from Υi we
have a (possibly empty) set of other formulae in Γ, similarly for Γ,Πi.

The completion of these rules in RND6 may be shown on diagrams in
the following way:

i Γ,Υi
1 i Γ,Πi

1
...

...
j SHØW: Γ,Υi

2 j SHØW: Γ,Πi
2

j + 1 Υ1 j + 1 Π1
...

...
k ν ∈ Υ2 k π ∈ Π2

Both subproofs in boxes are strict and no reiteration into them is al-
lowed. The only U-clauses taken from the outer derivation are modal as-
sumptions in line j + 1 being subclauses of U-clauses from line i with re-
spective modal functors deleted.

For R and K we must admit also modal reiteration of other Υ-clauses.
It is possible to define suitable rules in full generality, where Υ-parts of
any clauses are separated and reiterated into strict subderivation; exactly
as it was stated in the preceding rules. But such rules are very complex
to state, so we rather propose simpler variants, where only Υ-clauses with
no other formulae are considered. One should note that this solution is
sufficient since every clause of the form Γ,Υi may be separated into two
clauses Γ and Υi with the help of (suitably many) applications of [SUB] or

6Strictly speaking we should say RND-KM, but we usually omit this parameter since
KM is practically the only variant of ND we are using in this book for the presentation
of modifications of standard approach.
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one application of admissible rule [SEP ] (cf. Chapter 4).7 So the rules may
be stated as follows:

[CNEC] if Υ1;...;Υn � ν, then X � Υi
n+1, provided for each k ≤ n,

Υi
k ∈ X and ν ∈ Υn+1

[CPOS] if Π1; Υ1;...;Υn � Π2, then X � Πi
3, provided for each k ≤ n,

Υi
k ∈ X , Πi

1 ∈ X and Π2 ⊆ Π3

The completion of these rules in RND on diagrams look as follows:

D D
i SHØW: Υi

n+1 i SHØW: Πi
3

D′ D′

k ν ∈ Υn+1 k Π2 ⊆ Π3

where: X ⊆U(D) and the only U-clauses in U(D′) are either Υk obtained
by reiteration from Υi

k ∈ X or clauses inferred from them. Additionally in
[CPOS] we have Π1 ∈U(D′) in line i+ 1 as a modal assumption.

Thus in both cases subderivations in boxes are strict since only direct
subformulae of ν-formulae (and the chosen π-formulae in [CPOS]) from
the outer derivation are transferred by reiteration to them, all other are
forbidden.

We omit a detailed formulation of reiteration rule and a definition of
derivation for RND-L; it may be stated less formally as in Chapter 6 for
standard modal ND, or more formally as respective definition for classical
RND from Chapter 4, but with the addition that premises of inference
rules must be present in the same subproof and with an explicit clause for
reiteration. We leave it to the reader and instead we provide an example of
a proof in RND+[CPOS] for R. If we want to show that �p ∨ �q,�(r →
p) → ♦s,♦q → �t �R �r → ♦s ∨ ♦t, we build a derivation for a clause
Γ = ¬(�p ∨ �q),¬(�(r → p) → ♦s),¬(♦q → �t),�r → ♦s ∨ ♦t. It is
displayed below:

7It is in contrast to Fitting’s [94] system of destructive resolution, where a special rule
enabling such separation must be introduced.
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1 SHØW: Γ [16, SUB]
2 �p ∨ �q ass.
3 �(r → p) → ♦s ass.
4 ♦q → �t ass.
5 �p,�q (2, Cβ)
6 ¬�(r → p),♦s (3, Cβ)
7 ¬♦q,�t (4, Cβ)
8 SHØW: ¬�r,♦s,♦t [14, CPOS]
9 ¬(r → p), s m.ass(6)
10 p, q (5, Reit)
11 ¬q, t (7, Reit)
12 r → p, q (10, Cβ)
13 q, s (9, 12, Res)
14 t, s (11, 13, Res)
15 ¬�r,♦s ∨ ♦t (8, Cβ)
16 �r → ♦s ∨ ♦t (15, Cβ)

Note also that these rules are in fact clausal counterparts of [NEC-K]
and [POS-K], not their general versions, since we admitted only minimal
transfer of formulae characteristic for K. But both rules are adequate also
for R if we insist for [CNEC] that n ≥ 1 (i.e. at least one Υ-clause is reiter-
ated), and for [CPOS] that there is Πi

1 ∈ X yielding modal assumption; in
K these conditions are not required. If it is important to distinguish both
versions we will write [CNECR], [CNECK ] respectively.

These rules give us suitable elimination and introduction rules for π- and
ν-clauses in RND but, similarly as in ordinary ND, they are interderivable,
which is stated in the following:

Lemma 7.4 (Equivalence of proof construction rules)

1. [CPOS] is admissible in RND+[CNEC] in M, R, K

2. [CNEC] is admissible in RND+[CPOS] in M, R, K

Proof It is worth giving at least a proof of one part of the lemma, since
suitable schemata of elimination show that, despite theoretical dispensabil-
ity, in practice we may significantly shorten proofs by using them both. We
demonstrate the first case in version for R and K, because it is slightly more
complicated than for M and than elimination of [CNEC]. Let us consider
a schema of a part of a proof containing an application of [CPOS]:
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1 Πi
1 = {πi1, . . . , πik}

2 Υi
1

...
n+ 1 Υi

n

n+ 2 SHØW: Πi
3 = {πik+1, . . . , π

i
m} [o, CPOS]

n+ 3 Π1 ass.
n+ 4 Υ1 (2, Reit)

...
n+ 3 + n Υn (n+ 1, Reit)

D
o Π2 ⊆ Π3 (a result of D)

A subproof starting with line n + 3 and justified by [CPOS] may be
replaced by the following derivation displayed on the next page. Since it is
rather complicated we provide some comments:

When analysing this elimination schema, one should note that only
[SUB] and [CNEC] are applied in it. In subderivation starting with line
n + 3 this time we must write down complements of all elements of Πi

3 as
assumptions and additionally by ordinary reiteration we put inside clauses
Υi

1 – Υi
n from outer subderivation (lines 2 – n + 1 from simulated proof).

Note that lines n + 3 – o + n contain clauses built from ν-formulae only.
Lines o+n+ 2 – s+ 1 contain subderivation D1 which provides justification
of −πi1 (the complement of the first formula from clause Πi

1 from line 1). We
apply here modal reiteration to all modal clauses from lines n+ 3 – o+ n,
i.e. we rewrite them all, deleting every � (or ♦ preceded by negation).
Inside D1 we open one more subderivation (lines p + n + 2 – s + 1) which
justifies −π1. In this subproof we infer a clause Π1 from the assumption π1

by k applications of (W ), and next by reiteration we add clauses Υ1 – Υn.
It allows repetition of D which, in simulated proof schema, yields Π2. By
reiteration we rewrite also all clauses from lines o + n + 2 – p, so we have
a complement of every element of Π2. It yields ⊥ by suitable number of
application of resolution, and closure of subderivation from lines p+n+ 2 –
s+ 1 by [SUB]. Derived −π1 leads to closure by [CNEC] of all subderiva-
tion D1 and justifies −πi1. We repeat these steps deriving one by one all
unit clauses −πi2 – −πik with the help of subderivations D2 – Dk, which are
exact copies of D1. In this way we obtain complements of all elements of
Πi

1 which, by k applications of resolution leads to ⊥ and closes a proof of
Πi

3 by [SUB].
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n+ 2 SHØW: Πi
3 = {πi

k+1, . . . , π
i
m} [u, SUB]

n+ 3 −πi
k+1 ass.

...
o −πi

m z
o+ 1 Υi

1 (2, Reit)
...

o+ n Υi
n (n+ 1, Reit)

o+ n+ 1 SHØW: −πi
1 [p+ n+ 1, CNEC]

o+ n+ 2 −πk+1 (n+ 3, Reit)
...

p −πm (o,Reit)
p+ 1 Υ1 (o+ 1, Reit)

...
p+ n Υn (o+ n,Reit)
p+ n+ 1 SHØW: −π1 [s+ 1, SUB]
p+ n+ 2 π1 ass.

...
q Π1 (p+ n+ 2,W )
q + 1 Υ1 (p+ 1, Reit)

...
q + n Υn (p+ n,Reit)

D
r Π2 ⊆ Π3 (a result of D)
r + 1 −πk+1 (o+ n+ 2, Reit)

...
s −πm (p,Reit)

...
s+ 1 ⊥ (r, r + 1 − s,Res)
s+ 2 SHØW: −πi

2 [CNEC]
D2

...
s+ k SHØW: −πi

k [CNEC]
Dk

t Πi
1 (1, Reit)

...
u ⊥ (t, o+ n+ 1, s+ 2, . . . , s+ k,Res)
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Note also that in RND we avoid problems of full equivalence of such
rules characteristic for standard ND, where [POS] is equivalent to [NEC]
in monotonic and regular logics; for normal logics, stronger rule [⊥] was
necessary. But [CPOS] covers both variants: with Π2 nonempty it corre-
sponds to [POS] and with Π2 empty, to [⊥]. In fact, we may obtain a fully
uniform formalization of M, R and K if we change a bit a formulation of
suitable rules for M by deleting nonmodal Γ, and [POS] for R and K by
letting a clause Π2 ⊆ Π3 which closes a subproof to be only unit clause
(as in [POSM ]). The latter change is necessary since although in regular
and normal logics any Π2 is admissible, in monotonic logics only a version
with unit clause preserves normality. Such rules are sufficient since, as we
remarked above, a separation of modal part of any clause is always possible.
Thus we have only one pair of constant rules for all these logics – the version
with modal assumption; for R additionally reiteration is admitted, and for
K modal assumption for [CNEC] is stated as optional.

Also, due to Lemma 7.4., we can use either of these rules to obtain A-
or I- RND-formalization of M, R, K, similarly as in standard ND. Indeed
both rules are of interest; [CPOS] makes RND-system closer to tableaux,
so it may be better for describing proof-search, [CNEC] is more useful for a
comparison with ordinary axiom systems and makes the completeness proof
simpler what we use in the proof of:

Theorem 7.2 (Adequacy) RND+[CNECL] is adequate for L being M,
R, K

Proof For soundness it is enough to show that [CNEC] is normality pre-
serving. We demonstrate both versions. For [CNECM ] assume that ν
follows, in the sense of local consequence, from ∨Υ1 and that ∨{Γ,Υi

2} does
not follow from ∨{Γ,Υi

1}. Hence ‖ ∨ Υ1‖ ⊆ ‖ν‖, and at some point say w1,
in some neighbourhood model ∨{Γ,Υi

1} is true but ∨{Γ,Υi
2} is false. Since

all disjuncts of ∨{Γ,Υi
2} (including νi) are false in w1, then ‖ν‖ /∈ N (w1)

and w1 � ∨Υi
1. But in M, ∨Υi

1 implies �(∨Υ1), hence w1 � �(∨Υ1) and
‖ ∨ Υ1‖ ∈ N (w1). From this by ‖ ∨ Υ1‖ ⊆ ‖ν‖ and condition (m) we get
‖ν‖ ∈ N (w1) which yields a contradiction.

For [CNEC] assume that ν follows, in the sense of local consequence,
from ∨Υ1, ...,∨Υn. If ∨Υi

n+1 does not follow from X, then at the same
point, say w1, in some Kripke model, all disjuncts in ∨Υi

n+1 (including νi)
are false, whereas all clauses from X are true. So for each disjunct in ∨Υi

n+1,
there is a point Ri-accessible from w1 where the corresponding formula with
canceled modal operator is false; in particular, let ν be false in w2. Since
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w2 is Ri-accessible from w1, then for each ∨Υi
k ∈ X we have ∨Υk true in

w2 which yields a contradiction.
For completeness: interderivability of boxes and diamonds is captured by

our definition of ν- and π-formulae, we omit an easy proof of K in RND-R,
finally, any application of (RM), (RR), (RG) is easily simulated by [CNEC]
in respective logics.

7.4.2 RND for Other Modal Logics

The above system may be generalized to several normal logics by suitable
modification of reiteration rule in the same way as ordinary ND. We have al-
ready discussed the advantages and disadvantages of this approach. There-
fore, although suitable reiteration rules may be refined to comply with
clausal form, we follow here a different line of development. Partly it is
stated here for the sake of variety and partly because this approach may be
directly transferred to labelled systems that will be introduced later.

We can extend RND-K in two ways, either by adding a kind of expansion
rule:

(Exp-A) Γ, ϕ / Γ, ψ

or a kind of generalized resolution rule:

(Res-A) Γ, ϕ ; Δ,−ψ / Γ,Δ

In both cases we will call such a system MRND (modal RND). Note that
(Exp-A) and (Res-A) are schemata of many rules, where a parameter A is
instantiated by the name of some axiom, whereas ϕ and ψ are defined ac-
cordingly for each axiom A. Essentially (Res-A) is a resolution rule modulo
some unification of formulae specified in the table displayed below, whereas
(Exp-A) is rather tableau-like form of extending a system. Using either
type of rule yields the same effect since they are interderivable.

Lemma 7.5 (Equivalence of (Res-A) and (Exp-A))

1. (Exp-A) is derivable in RND+(Res-A)

2. (Rez-A) is derivable in RND+(Exp-A)

Proof
1. Assume Γ, ϕ in RND+(Res-A). We write down Γ, ψ as a Show-line

and −ψ as the only assumption of this subderivation. From Γ, ϕ and −ψ
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we obtain, by (Res-A), Γ which is sufficient to close this subderivation by
[SUB] and makes Γ, ψ U-clause inferred from our first assumption only.

2. If we assume both Γ, ϕ and Δ,−ψ, then from the first one we deduce,
by (Exp-A), Γ, ψ, and this clause together with the second assumption gives
us, by (Res), a clause Γ,Δ.

Although interderivable, it seems that especially MRND constructed
with the help of (Res-A) is a very natural way to make use of properties
of RND, since we do not need to introduce other kind of rules. In case of
M, R, K we have a simple instance of (Res) i.e. ϕ = ψ; for extensions the
table specifies respective values of both formulae for some axioms.

Axiom ϕ ψ side condition
D νi πi ν=π
DC πi νi ν=π
T νi ν –
TC πi π –
4 πi1 πi2 π1=πi2

4C νi1 νi2 ν1=νi2
5 πi νi νi=π
B πi ν νi=π

B-Te πi ν νj=π, i �= j ∈ {F, P}

For example, by (Res-B) we may deduce a clause Γ,Δ from two premises:
Γ,♦¬♦p and Δ, p, because ♦¬♦p is our πi, its π is ¬♦p which is our νi

(side condition), and its ν is ¬p, so p is −ν required in the schema of the
rule.

With the help of suitable instances of (Exp-A) or (Res-A) one may
obtain in a modular way a formalization of all basic (monotonic, regular,
normal) logics, as well as some normal logics of functional and dense (axiom
4C) accessibility relation. Moreover, with the help of (Res-B-Te) (or (Exp-
B-Te) and possibly some other rules one may obtain a formalization of some
temporal logics like Kt, Kt4, Kt4D.

To prove completeness of our systems of MRDN is nothing more than
to compare values of ϕ and ψ in the table with suitable axioms collected
together in Chapter 5 (cf. the table in Section 5.3) On the basis of the fact
that RND+[CNEC] (or [CPOS]) suitably stated is equivalent to axiomatic
M, R, K we can prove equivalence with any axiomatic formalization of L
over one of these logics in a modular way. We use (Exp-A) for that. Assume
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we have added an axiom A= ϕ→ ψ to RND+[CNEC], we can simply prove
derivability of the corresponding (Exp-A). From A by (Cβ) we get −ϕ,ψ,
if we assume a premise of our rule Γ, ϕ, then by (Res) we obtain Γ, ψ. On
the contrary, having (Exp-A) we can easily prove A. Assume negation of
A, then by (Cα) we obtain ϕ and −ψ. But from ϕ we deduce, by (Exp-A),
ψ, which by (Res) leads to ⊥.

In RND one may simulate some resolution systems invented for modal
logics; we briefly compare our solution with an approach of Fitting [94].
Fitting’s system operates on so called blocks that are disjunctions of con-
junctions of disjunctions, so his rules are a bit complicated. He needs some
mechanism for splitting chosen disjunction, for example if we have X; Γ,Δ
we must be able to obtain X; Γ or X; Δ. This is something like branching
in tableau systems and the only reason for using two levels of disjunctions
instead of simple normal forms. The suitable rule is called Special Case
Rule.

In RND things are simpler: our clauses correspond to basic disjunctions
(“,” stands for ∨) and sets of U-clauses present in the same subderivation
correspond to conjunctions (“;” stands for ∧). In order to simulate the
next level of disjunction (blocks) and to simulate the branching effect of
Special Case Rule we do not need any special rules. Every application
of Special Case Rule is easily simulated by [SUB] – any time we need to
split some clause, say Γ,Δ, we simply start S-line for Γ and write down
all assumptions. By successive application of (Res) we get Δ, hence this
subderivation corresponds to X; Δ and if it closes we have X; Γ, since Γ
becomes U-clause after closing a subproof.

The system of Fitting is called destructive, since rules for modals cause
that some clauses are deleted in blocks (and some are modified). His rule
for K allows every set of clauses of the form {Δ1, ...,Δi,Υi

1, ...,Υ
i
k,Π

i} to
be replaced by {Υ1, ...,Υk,Π}. Now it is evident why blocks are needed
and splitting of some clauses; we must separate subsets containing only ν-
or π-formulae from the rest, before we may apply modal rules. In order to
simulate this effect in MRND we must simply apply [POS] with reiteration.

[94] provides also rules for T, K4 and S4, that are easy to simulate in
MRND.8 Although our approach is more extensive and easier to deal with
than Fitting’s system, it has also some disadvantages. Similarly as standard
ND, MRND is not confluent, so even if in some cases a proof search may
run faster, in general it is also not a system well suited for model extraction

8In fact, Fitting’s rule for T is just our (Exp-T ).



254 CHAPTER 7. BEYOND BASIC LOGICS

from open (and finished) derivations. In case of MRND we have lost also
some nice feature of classical RND – the possibility of building “flat” proofs
(of degree=1). It is mainly a consequence of introduction of additional proof
construction rules which must be used in essentially modal proofs, but also
a necessity of using [SUB] to split mixed clauses into modal and non-modal
parts.

We leave to the reader a details of extending MRND to cover congruent
or first-order modal logics. In the latter case one may use RND rules for
CQL and FQL from Chapter 4. In the former, the simplest way is just
to enrich RND with proof construction rule [NEC ′

E ] stated in Section 6.5,
to formalize E, and use (Res-A) or (Exp-A) for extensions. Note however
that some generalization of [NEC ′

E ] to clausal form is possible.

7.5 Nonstandard Deductive Systems

Restricted application of standard proof methods to modal logics generated
two strategies: either construct nonstandard proof system better suited to
formalization of modal logics, or change the language into something more
sensitive to the application of standard methods. The second choice has led
to invention of hybrid logics9 that – as we shall see – represent far better
behavior when formalized with standard tools. We will present hybrid logics
and some of their formalizations in Chapters 11 and 12.

For the time being we focus on the first strategy. Nonstandard ap-
proaches usually based on the use of richer metalogical apparatus, appeared
very fruitful and, in particular on the ground on the methodology of sequent
calculi, have led to the invention of many interesting general frameworks
suitable not only for modal logics. We can mention here for example the
method of hypersequent calculi due to Avron, or Belnap’s general theory of
display calculi (in particular for modal logics, the presentation of these and
many other approaches may be found in Wansing [280, 281] or Poggiolesi
[214]). We are not going to describe these systems because most of them
cannot be used as a source of modification of ND system – which is our
main goal in this book. There are two exceptions however. The first con-
sists of labelled systems in the wide sense of the word; for presentation of
this approach we reserve the rest of the book, since it may be combined in a
variety of ways with ND systems. As for many other approaches we restrict
our attention only to some group of nonstandard TS’s which, despite many

9But not only; we can mention also description logics in this context despite its different
origin.
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differences, represent some structural similarity. All of them are hybrid
systems in the sense of combining TS with some graphical interface rep-
resenting semantical environment of modal logics. In fact, these solutions
are rather not possible to combine with ND but offer an interesting way of
formalizing temporal logics including linear ones, and this is the reason for
inclusion of their brief presentation in this book. Moreover, one of these
proposals, namely Kashima nonstandard TS, is a handy tool for represent-
ing several rules introduced for linear logics and will be applied throughout
for this aim, especially in Chapter 9.

7.5.1 Semantic Tableaux of Kripke

It is worth noting that the system of Hintikka-style tableaux for modal
logics described in Chapter 6 is not the only solution that may be called
standard. One may remember that in Chapter 3 we have presented three
popular variants of this method, due to Hintikka, Beth and Smullyan. In
fact, classical works of Kripke [169, 170], which are treated as a milestone
in the development of relational semantics, introduced also the extension of
the method of Beth diagrams to many modal logics. Further extension of
this type of tableaux may be found in Zeman [288]. The solution proposed
by Kripke may seem rather obvious from the point of view of relational
semantics; for every point in a model we build a separate diagram, whereas
external (with respect to deductive system) information concerning prop-
erties of accessibility relation governs the process of rewriting some chosen
formulae from one diagram to another.

In such TS semantical elements are even more important than syntactic
base. So Kripke system belongs to the class of hybrid systems in the sense
of combining a deductive system with explicitly represented elements of
semantics. Such an approach has many advantages: a definition of rules is
invariant, in case of logics with symmetric accessibility relation, there is no
problem with moving back to earlier states (diagrams), e.t.c.. This approach
is also format insensitive: one may combine with every state not only Beth
diagrams, but Smullyan’s trees or simply a form of truth-table test (like in
[135]). In fact, there is no reasons why not to combine this approach with
any deductive system, like KE or ND. Such an approach is also evident in the
way of presentation of tableaux for description logics due to Horrocks ([133]
or [134]), where an internal representation of a deduction in states is rather
not essential; an external tree of states is the main concern of the authors.
Similar solution is applied by Heuerding, Seyfried and Zimmermann [130],
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where trees of worlds are built with sets of formulae as nodes.
But in this approach there is no special deductive system but rather

an embedding of such a system in some graphically represented semantic
frame. In tableau systems of this kind a natural relationship to modal SC’s
is lost. Fitting [93] noticed also that systems of this sort may cause some
practical problems, since instead of one proof-tree we may easily generate
a whole forest. But it is rather a problem of pen and paper realization not
that of automation. There are well known implementations of this technique
with very good performance, e.g. due to Horrocks, Sattler and Tobies for
description logic in [134]).

7.5.2 Tableaux with Boxes

It is quite natural that some approaches were proposed that represent the
idea of Kripke solution in a more compact way. Slightly more subtle variant
of Kripke’s approach may be found in Rescher and Urquhart [231]. They
present an extension of Smullyan’s TS for temporal logics, where Jaśkowski’s
boxes are applied for separation of parts of proof-tree that hold in the same
point. So we have only one tree but a node may be either a formula or a
box containing a subtree, where further boxes may be embedded. Every
box is labelled; if the box labelled with t′ is inside the box with label t, it
means that Rtt′. Essentially the same solution is applied also by Boolos in
his TS for G [50]. Also Garson’s system of diagrams in [105] belongs to this
category. Systems of this sort are quite close to standard ND systems for
modal logics due to Fitch, but there is one difference. The tree of boxes in
such a version of TS corresponds strictly to the tree of worlds in attempted
falsifying model, whereas in Fitch’s style ND only some boxes (i.e. strict
subproofs) realize this function.

From the standpoint of practical application Rescher/Urquhart system
has one serious disadvantage. Every time we want to move some ν-formula
(or its direct subformula) to other temporarily finished box, we must rewrite
all the diagram.10 Once again, in case of implementation, it may be no
problem at all. We are not going to present this system in detail, but at
least the solution for logics of linear time is worth describing. It is postponed
however to Chapter 9 for easier comparison with other approaches.

10It is avoided in Garson’s system but at the expense of dividing boxes corresponding
to one world into several parts.
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7.5.3 Systems of Higher Level

This approach in general is based on the idea of using nested structures
as basic items. It has at least four independent and very different mani-
festations. Dos̆en [80] has applied such a solution to S4 and S5 building
SC, where sequents appear as elements of other sequents. Kashima [161] on
the basis of some ideas of Sato [240] applied similar solution to obtain for-
malization of some temporal logics. Stouppa [264, 265] defined a system of
deep inference for S5, extending the calculus of structures due to Guglielmi.
Recently Poggiolesi [214] proposed tree-hypersequent calculi for basic nor-
mal modal logics and G, where ideas of Avron’s hypersequent calculus are
considerably generalized.

We restrict a presentation to the system of Kashima because it covers
logics which are of interest for us. Kashima himself calls his system SC, but
in accordance with the distinctions introduced in Chapter 3 we must rather
say that it is a generalization of Schütte’s format TS. For easier comparison
with solutions introduced earlier we will present his system in dual form,
i.e. as a generalization of TS in Hintikka format.

Building blocks of Kashima’s TS are just families of sets of formulae,
called K-sequents.11 The notion of K-Sequent may be defined inductively:

Definition 7.1 • any finite set of formulae is a K-sequent;

• if X is K-sequent, then {FX} and {PX} are also K-sequents;

• if X and Y are K-sequents, then X,Y is a K-sequent.

The application of braces allows us to encode in a single K-sequent the
whole attempted model, not just one point of its domain as in standard
modal TS. For example, a K-sequent Γ{FΔ{PΣ}{FΠ}} denotes a model
containing four points: t1 satisfies Γ, t2 satisfies Δ, t3 satisfies Σ, and t4
satisfies Π, moreover for Kt, Rt1t2, Rt3t2 and Rt2t4; for stronger logics
there may be additional clauses, e.g. for Kt4 it will be transitive closure
of R, i.e. Rt1t4 and Rt3t4. This is the basic idea; temporal rules are the
following in Kt:

(FE) X [Fϕ]
X[{Fϕ}]

(PE) X [Pϕ]
X[{Pϕ}]

11Kashima uses lists of formulae not sets which forces him to use also some structural
rules. From the point of view of our needs it is unnecessary complication, but as a result
also our version of Kashima’s rules for temporal connectives differ somewhat from the
original.



258 CHAPTER 7. BEYOND BASIC LOGICS

(G-Exit) X [Gϕ {FY }]
X [Gϕ {Fϕ, Y }]

(H-Exit) X [Hϕ {PY }]
X [Hϕ {Pϕ, Y }]

(G-Enter) X[{PGϕ, Y }]
X[ϕ {PGϕ, Y }]

(H-Enter) X[{FHϕ, Y }]
X[ϕ {FHϕ, Y }]

We have used [ ] for indication that elements inside are on the arbitrary
level of embedding. It is not necessary since any operations may be done
on the level 0 (i.e. no braces), but for that we need two additional rules:

(turn) {PX} Y
X {FY }

{FX} Y
X {PY }

In the presence of (turn) both rules (Enter) are of course derivable.
Kashima distinguishes both systems and shows their equivalence with regard
to formalization of temporal logics; it should be noted however that the first
approach is – from the standpoint of potential applications – more general
solution. One may admit only one sort of braces and in this way obtain
a formalization of monomodal logics, but then rules like (turn) are correct
only for symmetric logics.

Kashima’s system is an interesting extension of Sato’s ideas and has
potentially wide scope of application. It is worth noting that this TS is
confluent, analytic and cut-free for many logics, where standard approach
fails to have these features. Also in this kind of a system we may simulate
easily many solutions introduced on the ground of other systems which
makes it particularly useful for comparison of different techniques. This
feature of Kashima’s system will be particularly valuable for our interests.
For example, every diagram of Rescher/Urquhart may be easily rewritten
as a K-sequent, and the opposite also holds. For us the former is more
important, since we may use Kashima’s system for concise representation
of Rescher/Urquhart’s rules. On the other hand, if Kashima’s system is
considered as a tool for actual pen and paper proof search it seems not to
be very handy. The necessity of rewriting all parametric formulae in every
application of a rule is undoubtedly a disadvantage.



Chapter 8

Labelled Systems in Modal
Logics

One of the most important nonstandard approaches to formalization of
modal logics is based on the application of labels. This technique is con-
nected not only with modal logics but has a really wide scope of application
in several branches of logic. In modal logic labels extend a language with
a representation of states in a model. Their addition considerably increase
the flexibility of expression.

Section 8.1 introduces some preliminary taxonomy of solutions based
on the application of labels. Roughly speaking, they fall into external and
internal approaches. A presentation of the internal approach, represented in
particular by the use of hybrid languages, will be postponed to Chapters 11
and 12. For the time being, we focus on the external approach, where labels
are metalinguistic devices. Existing labelled deductive systems of this sort
may be divided additionaly on weak, medium and strong, according to the
strength of labeling commitment.

The application of labels in weakly labelled systems is very restrictive.
They usually work as an additional mechanism supporting the proof con-
struction but not sufficient for extraction of falsifying models for invalid
formulae. We will discuss some of such solutions briefly in Section 8.2.

The situation with strong labelling is similar to that of hybrid languages.
The latter are in itself strong enough to express everything usually repre-
sented by algebra of labels in strongly labelled systems. In fact, hybrid
languages are even stronger. Because of that, our discussion of strong la-
belling in Section 8.2 is very short and the potential capacities of such an
approach will be presented in Chapters 11 and 12.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 259
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 8,
c© Springer Science+Business Media B.V. 2010
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In this Chapter, and in the next two, we focus on the approach of Fitting,
called here medium labelling. It is one of the most popular solution for
modal deduction – simple and natural. In this approach labels linked to
formulae are finite sequences of natural numbers encoding, at the same
time, the name of a state where this formula is evaluated and the place of
this state in a (falsifying) model we are searching for. The technique and
its generalization to multimodal logics is introduced in Section 8.3.

Although, historically (and also statistically), labelling is associated with
tableau methods, it must be stressed that this technique is independent of
the kind of a proof system we use. Clearly, our attention will be paid
on ND systems. Sections 8.4 and 8.5 contain labelled ND system (shortly
LND) for K and its extensions to other normal and regular logics. LND
for first-order modal logic and for some temporal logics are also presented.
In Section 8.6 we show how this technique may be extended to weak modal
logics characterized by neighbourhood semantics. In the last section we
present two kinds of labelled RND (LRND) systems for modal logics.

8.1 Kinds of Labelling

Generally labels are very handy if we deal with information having complex
structure, especially when different sorts of data need different forms of
processing. Dov Gabbay in his general theory of LDS’s (labelled deductive
systems) considered several applications from different fields. For example,
labels may be used to represent:

1. fuzzy reliability value n (0 ≤ n ≤ 1) used mainly in expert systems,

2. the situation where the infon holds in situation semantics,

3. the set of assumptions for a formula (e.g. Anderson/Belnap [5] ND-
systems for relevant logics),

4. truth values or the sets of truth values for a formula (e.g. Carnielli
[61] or Hähnle [119] tableau systems for many-valued logics),

5. possible world (point of time) satisfying a formula in modal (temporal)
logics.

Of course, for our aims, the last item is the most important. No doubts, the
main breakthrough in the development of modal logic was theinvention of
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relational semantics. Simple, natural, philosophically motivated semantics
is still considered as the basic tool for model theoretic investigations on
modal logic, but five decades of research has shown that the correspondence
with old syntactical tradition is far from being perfect. Carlos Areces has
pointed out (as mentioned in [33]) that the very source of the problem is
an asymmetry between local perspective of relational semantics and global
perspective of standard modal language. Namely, states in a model which
are essential in relational semantics, are not represented in modal syntax.
But what’s wrong with this? We can mention at least two undesirable
results of this situation:

1. the lack of adequate representation for many semantic features

2. problems with suitable modal proof theory

The second item was already discussed in the preceding Chapter, whereas
the first one was touched upon in Chapter 5. We have pointed out that
standard modal languages have no mechanisms for naming particular states
(worlds) in a model, asserting or denying equality of states, talking about
accessibility of one state from another. All these things lie at the heart of
modal model theory but there is no way of representing them in standard
modal syntax. The situation is striking; especially if we compare it with
the situation in classical first order logic, where elements of a model have
direct representation in a language. In effect, many important properties
of relational frames are expressible in a very roundabout way, while many
others are not expressible at all in the standard modal language.

Hence the natural question arises how to find a remedy for the problem
of discrepancy between a syntax and a semantics. One possibility is just
to introduce an explicit syntactic representation of states in a model. Such
an extension is needed to increase a flexibility of expression but it leads to
the next question. In what way we can realize this task? It must be said
that even in case of the application of labels in modal logics there is a lot
of possible solutions.

Blackburn [32] distinguishes three kinds of labelled deduction systems:

1. external – labels as an additional technical apparatus,

2. internalized – labels as a part of a language (in particular, nominals
in hybrid languages),

3. mixed – both nominals (in a language) and labels (metalinguistic de-
vices) are present.
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In the external approach we use additional metatheoretic apparatus con-
nected to the language in question. In case of modal logics the most popu-
lar solution was the addition of the machinery of prefixes to formulae, due
to Fitting ([92] in fact refers to earlier note of Fitch [90] as a source of
inspiration). The best advocate of this approach in its generalized form is
Dov Gabbay with his general theory of formalization of logics as labelled
deductive systems [99].

The internalized approach consists of the enrichment of the object lan-
guage obtained via sorting (of the atoms) and addition of the new operators
and/or modalities. It is the way of doing hybrid logic. Logics of this sort
and some of their formalizations will be presented in Chapters 11 and 12,
where we also briefly describe mixed approach.

For the rest of the Chapter we focus on the external approach. Even
in this group we can distinguish a variety of different solutions, according
to the strength of semantical commitment expressed by labels. We divide
them on three groups:

1. Weak labelling – labels as a very limited technical device supporting
proof construction, e.g. tableau systems of Marx, Mikulas, Reynolds
[183] for linear tense logics based on the use of three labels, multise-
quent calculi of Indrzejczak [146] for tense logics.

2. Strong labelling – a system of labels as an exact representation of
an attempted falsifying model. Strongly labelled deductive system
is a fusion of 2 systems: object language calculus + calculus for the
algebra of labels, e.g. Gabbay’s theory of labelled systems, Russo [237]
ND-systems for modal logics, Basin, Matthews, Vigano [21, 22] ND-
systems for nonclassical logics.

3. Medium labelling – with no special calculus for labels but still suffi-
cient for construction of a falsifying model e.g. Fitting’s [93] prefixed
tableau calculi for modal logics or single-step tableaux of Massacci
[185, 186], explored by Goré [117] under the name explicit systems.

In what follows we will concentrate mainly on medium approach because,
in our opinion, it has a lot od advantages. It is quite simple and natu-
ral since the technical apparatus is kept in reasonable bounds. Fitting’s
labels (prefixes) are not as direct way of encoding semantics as strong la-
bels or internalized approach, so one of Avron’s condition of good deductive
framework from [16] seems to be satisfied. Still they may be easily used
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for construction of falsifying models. ND systems with this kind of labels
are free of many drawbacks of standard ND discussed previously, so they
may be used as practical decision procedures and even applied in automated
deduction. Moreover, this approach is quite extensive – Fitting’s original
systems cover a lot of normal and regular logics, Massacci’s version formal-
izes even more; we extend it to basic weak modal logics, and to temporal
logics (and multimodal logics in general). Some logics, like e.g. linear modal
and temporal logics, are characterized by frame-conditions which seem to
be hardly expressible in terms of Fitting’s prefixes. One of the contribution
of this book is to show that this technique may be used even to obtain a
satisfactory formalization of this class of logics. So, in contrast to strongly
labelled systems, we obtain quite satisfactory result with the help of rela-
tively modest apparatus.

But first, we briefly discuss some systems representing weak and strong
labelling. As usual we have chosen only a few systems that satisfy some of
the criteria laid down in the Introduction and in the preceding Chapter. In
particular, strongly labelled systems are presented in a sketchy way, because
all the solutions from this area may be easily simulated by hybrid logics,
and these will be discussed in the last two chapters.

8.2 Weak and Strong Labelling

8.2.1 Some Weakly Labelled Systems

There is a lot of deductive systems, where labels of several sort are applied
in a very limited way. Probably the earliest one is SC of Kanger [160]
for S5, where labels are linked only to propositional variables. Also TS of
Rescher/Urquhart [231], described in the preceding Chapter, may be seen as
a weakly labelled system because every box on the tree has a label denoting
time point. Here we introduce two weakly labelled systems formalizing
some bimodal temporal logics: TS of Marx, Mikulas, Reynolds [183] and
SC of Indrzejczak [146]. What is of particular importance for us is the fact
that both systems contain different rules for logics of linear time. We treat
them as weakly labelled systems because in both cases labels play only a
supporting role in a deduction, separating some parts of a derivation. Their
motivation is in fact semantical but only a very small part of interpretation
is involved. The apparatus of labels in itself is in both approaches too
weak to help building a falsifying model, in contrast to medium and strong
labelling, where we can directly extract a model from labels.
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Nonstandard TS

TS of Marx, Mikulas and Reynolds [183], is in Hintikka format, but instead
of sets of formulae, every node of a proof-tree is an ordered pair or a triple
of sets of formulae. Parts of such triples are indexed with three labels:
l(eft), m(iddle) and r(ight). They serve to indicate the relative position
of three time points in a linear model, i.e. RI(l)I(m) and RI(m)I(r),
where I(k), k ∈ {l,m, r} denotes a state being a value of respective label.
It is important that suitable label is added to some set only temporary and
may change its position during proof construction. So labels “name” time
points but not in an absolute sense like in labelled systems of strong and
medium character. It is “relative” naming, showing at some stage of search
of falsifying model, where this point is located with respect to some other
points (immediate neighbours). We list below for illustration only rules for
temporal constants, since extensional constants are treated by standard α-,
β-rules realized in a set labelled by one of l,m or r.

(FE) m : Γ, GΔ, Fϕ
l : Γ, GΔ, Fϕ ; r : GΔ,Δ, ϕ

(PE) m : Γ, HΔ, Pϕ
l : HΔ,Δ, ϕ ; r : Γ, HΔ, Pϕ

An informal interpretation of (FE) is such that if a conjunction of el-
ements of Γ, GΔ and Fϕ is satisfied in a point labelled temporary by m,
then we introduce a point labelled by r, where a conjunction of elements of
GΔ,Δ and ϕ is satisfied. Renaming of m for l is an evidence of establishing
an accessibility relation between them. (PE) is dual rule.

Interesting rules are provided for weak connectedness:

(3FE) l : Γ, GΔ, Fϕ; r : Λ, HΣ,¬Fϕ,¬ϕ
l : Γ, GΔ, Fϕ; m : GΔ,Δ, ϕ,HΣ,Σ; r : Λ, HΣ,¬Fϕ,¬ϕ

(3PE) l : Γ, GΔ,¬Pϕ,¬ϕ; r : Λ, HΣ, Pϕ
l : Γ, GΔ,¬Pϕ,¬ϕ; m : GΔ,Δ, ϕ,HΣ,Σ; r : Λ, HΣ, Pϕ

One may note that in both rules the new point with label m is inserted
between sets labelled with l and r. In (3FE) it is created by Fϕ from
l-set, whereas in (3PE) by Pϕ from r-set. Inclusion of GΔ,Δ, HΣ,Σ in
m-set is necessary for providing assumed interpretation of a set m, i.e. that
RI(l)I(m) and RI(m)I(r). It should be stressed that it is one of the few
formalizations of linear logics which does not use branching rules to express
connectedness. Marx, Mikulas and Reynolds provide also rules for other
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linear temporal logics but to obtain complete formalization they must use
some form of analytic cut.

Remark 8.1 In fact, the system of Marx, Mikulas and Reynolds may be
classified as a member of higher-arity proof systems. It is a family of non-
standard systems that multiply the number of parts of a sequent. The
natural place for such a solution was of course in many-valued logics (cf.
[236, 61]), where the number of arguments corresponds to the number of
truth values. But this approach has also some representation in modal log-
ics, where application of more arguments is not always based on so direct
semantical motivation. Except aforementioned ternary ST, we may distin-
guish at least two groups of solutions.

The first group contains SC’s of Sato [240], and of Humberstone and
Blamey [42] for some modal logics where sequents have 4 parts, and SC of
Nishimura [195] for temporal logics with 6-ary sequents. The motivation is
to distinguish formulae simply true from necessary true (necessary true in
the past or future in temporal case).

The second group is a collection of several SC’s, where in a standard
sequent we have a separated part (set, multiset or list of formulae) encoding
a “history” of attempted falsifying model. We can mention here SC of
Heuerding, Seyfried and Zimmermann [130] for S4 and Kt4, which are
implemented in WorkBench program; a system of Mouri [192] for K4 and
S4 (xpe program) and a system of Goré and Bonette for Kt4 [49]. In all of
them, despite the differences, a partition of a sequent facilitates control over
loops and better managing of ν-formulae. In WorkBench and xpe, except
traditional branching connected with β-formulae, an additional conjunctive
branching is introduced to make a system confluent.1 ♣

Multiple Sequent System

This system, presented in [146], was provided for temporal logics, similarly
as the TS of [183]. The main feature of MSC is that each sequent has a label
attached, being an ordered pair of natural numbers. In general, sequents are
of the form Γ < i, j >⇒ Δ; if i = j = 0 it is an ordinary Gentzen’s sequent,
otherwise it is an intensional sequent of some sort. The basic motivation
is semantic in nature; in intensional sequent an antecedent and a succedent
refer to two different time points in attempted model. The label of a sequent
shows how far apart these points are, via the future-oriented accessibility

1Cf. remarks in Section 7.2 on the lack of confluency in most of standard modal SC’s.
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relation. For example, a sequent Γ < 3, 2 >⇒ Δ shows that we have some
points, say t0, t3 and t2, such that t3 is accessible from root-point t0 in three
steps and t2 is accessible from t0 in two steps, Γ is satisfied in t3 and Δ is
satisfied t2. Hence, a semantic encoding of labels in MSC is not connected
with each formula in a sequent, but with the whole sequent that corresponds
to a partial description of the attempted model. It makes MSC labels only
proof-supporting device not sufficient to obtain a description of a falsifying
model.

In some respects MSC is more similar to such sequent systems like dis-
play calculus, where a number of structural rules is needed to character-
ize modal constants (cf. Wansing’s exposition in [280]) MSC also contains
plenty of rules with some of them, in a sense, structural. We display below
as an illustration only the basic rules for temporal connectives:

(G⇒) ϕ < 0, j >⇒ Δ
Gϕ < 0, j + 1 >⇒ Δ (⇒ G) Γ < i, j + 1 >⇒ ϕ

Γ < i, j >⇒ Gϕ

(F ⇒) ϕ < i+ 1, j >⇒ Δ
Fϕ < i, j >⇒ Δ (⇒ F ) Γ < i, 0 >⇒ ϕ

Γ < i+ 1, 0 >⇒ Fϕ

(H ⇒) ϕ < i, j >⇒ Δ
Hϕ < i+ 1, j >⇒ Δ (⇒ H) Γ < i+ 1, 0 >⇒ ϕ

Γ < i, 0 >⇒ Hϕ

(P ⇒) ϕ < 0, j + 1 >⇒ Δ
Pϕ < 0, j >⇒ Δ (⇒ P ) Γ < i, j >⇒ ϕ

Γ < i, j + 1 >⇒ Pϕ

(Gj ⇒) Γ < 0, j >⇒ Δ − ϕ
GjϕΓ < 0, j >⇒ Δ

(⇒ F i) −ϕΓ < i, 0 >⇒ Δ
Γ < i, 0 >⇒ Δ Fiϕ

(H i ⇒) Γ < i, 0 >⇒ Δ − ϕ
HiϕΓ < i, 0 >⇒ Δ

(⇒ P j) −ϕΓ < 0, j >⇒ Δ
Γ < 0, j >⇒ Δ Pjϕ

Even this set of logical rules is not enough to obtain a formalization of
Kt; one needs four structural rules:

(KF ) Γ < i, 0 >⇒
Γ < i+ 1, 0 >⇒ (KG) < 0, j >⇒ Δ

< 0, j + 1 >⇒ Δ

(KP ) Γ < 0, j >⇒
Γ < 0, j + 1 >⇒ (KH) < i, 0 >⇒ Δ

< i+ 1, 0 >⇒ Δ

MSC is confluent but lacks a general proof of cut-elimination although
some simpler versions devised e.g. for S5 (cf. [142]) were proved to be
adequate in cut-free version.

Remark 8.2 In fact MSC may be seen as belonging to the wider category
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of SC’s using more than one type of a sequent. Curry [75, 76] was the first to
introduce the calculus with two types of sequents for S4, a formalization of
this sort for S4.4 is also due to Zeman [288]. Avron, Honsell, Miculan and
Paravano in [17] considered a calculus where two types of sequents corre-
spond to different deducibility relations. Indrzejczak [142] presented double
sequent calculus for S5 and more general constructions in [143], where two
calculi were defined: GSC I has three types of sequents, whereas GSC II
has a denumerable family of sequents of different grades, where a grade
is simply a natural number. Although GSC I was sufficient to deal with
regular and normal logics axiomatized by means of D, T, 4, its apparatus
was rather poor to provide a cut-free formalization for symmetric logics,
like KTB. It was the reason to introduce GSC II, where the machinery of
grades enables syntactic representation of “moving back” to the preceding
worlds in Kripke models – a characteristic feature of symmetric logics. MSC
evolved as a system where advantages of both approaches may be combined.
The first approach to combine GSC I and GSC II was rather trivial. There
were three types of sequents: one classical, and two modal (like in GSC
I) and, moreover, both modal types were ordered by grades (as in GSC
II). However, this obvious combination, was not sufficient to capture such
properties of Kripke models like Euclideaness or weak connectedness. In or-
der to obtain a more expressive formalization it was necessary to mix both
modal types in one sequent which was done in MSC by replacement of a
grade by a label being a pair rather, than a single number. In consequence,
MSC is technically more complicated, but has a significantly wider scope of
application. ♣

8.2.2 Strong Labelling

The opposite solution to the question of building hybrid systems with the
help of labels is represented by labelled systems in Gabbay’s tradition [99].
In such an approach labels save as much as possible from suitable semantics,
but in contrast to internalized approach, labels are not part of a language.
Instead we have a composition of two languages: an object language of a
logic and a language of an algebra of labels. In deductive system of this sort
except rules for logical constants we have also rules governing the behaviour
of labels, and usually some rules which correlate both levels. This form of
labelled calculi is in fact very close to indirect (translational) approach to
resolution for modal logics (cf. Section 3.3).
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Such an approach is very popular. One may find several simplified vari-
ants of easy-in-use TS’s of this kind for many nonclassical logics, including
modal ones, in several textbooks (cf. e.g. books of Girle [111] and of Priest
[222]). There are also more theoretically oriented works investigating la-
belled SC’s for modal logics, e.g. Castellini and Smaill [63, 62], Negri [194];
TS for multimodal logics is provided by Baldoni [18, 19]. All these systems
offer general results for wide classes of logics and will be discussed in more
detail in the next Chapter and in Chapter 12; first, we discuss particu-
lar instances needed for linear logics, and then we introduce more general
solutions in the context of deductive systems for hybrid logics.

The application of strong labelling was also used in the construction
of ND systems for modal logics, independently by Russo [237] and Basin,
Matthews and Vigano ([21] (also for other nonclassical logics in [22] and
[287]).2 In such a system, except labelled formulae (l-formulae for short), we
have formulae of a relational language (r-formulae) which directly express
properties of accessibility relation in suitable models. Let x, y, z denote
labels, x : ϕ an l-formula, xRy – an r-formula, and Γ – a set of formulae
of any kind. For the sake of illustration and further comparison, we briefly
describe ND system of Basin/Matthews/Vigano. They provide the following
rules for K:

[L�I] If Γ, xRy � y : ϕ, then Γ � x : �ϕ,
where y �= x is a label not occurring in any assumption in Γ

(L�E) x : �ϕ , xRy / y : ϕ
(L♦I) y : ϕ , xRy / x : ♦ϕ
[L♦E] If Γ, y : ϕ , xRy � z : ψ, then Γ , x : ♦ϕ � z : ψ, where

y (z �= y �= x) is a label not occurring in any assumption in Γ

In this system the extensions of K are obtained in a modular way by
adjoining rules defined on r-formulae only, e.g. to get a symmetry we need
a rule: xRy / yRx. Although in this way one may define suitable rules
for almost all normal modal logics introduced in Chapter 5, the interests of
Basin, Matthews and Vigano are limited to these logics which may be for-
malized by Horn clauses in relational language, because their normalization
theorem works for this class. We will take a closer look at the possibil-
ity of uniform formalization offered by so strong engagement of semantics
in Chapters 11 and 12. In the meantime we will investigate the scope of
application of systems which use labels in a more limited way.

2One may mention also ND systems with strong labelling for other kinds of temporal
logics not discussed in this book, like PLTL or CTL provided by Renteria and Hausler
[230] or by Bolotov, Basukoski, Grigoriev and Shangin in [47, 48].
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8.3 Medium Labelling – Fitting’s Approach

The popular approach of Fitting [93] is situated between the extrema of
weak and strong labelling. There are no operations on labels performed in
extra language like in Gabbay style systems – labels are always linked to
formulae of an object language. On the other hand, labels have structure
of their own which helps to build a model using them as building blocks.
It is possible because each label is not only a name of a state in a model,
but its structure encodes the place of this state in a falsifying model we are
attempting to build.

From the technical point of view labels are nonempty finite sequences
of natural numbers, separated with dots, with 1 as the first digit. We will
use σ, τ, θ for labels or their parts (any strings of integers, not necessarily
with 1 as the first digit and not necessarily nonempty), and i, j, k for natural
numbers. Let LAB represent the set of all labels; formally it may be defined
as follows:

Definition 8.1 (Labels)

1. 1 ∈LAB;

2. If σ ∈LAB, then σ.k ∈LAB.

σ.k denotes the label with k as the last digit, στ represents the label being
the concatenation of two strings, We will call σ a parent and σ.i a child;
except the root label 1 (which is not a child of any label), all other labels are
children. We say that σ is an extension of τ , if σ = τθ for some nonempty
string θ (recall that we do not assume that strings are always nonempty like
labels). The length of a label σ (or its part) which is the number of digits
in σ will be referred to as | σ |.

Hence 1, 1.1.3.2.1, 1.2.1.1.5 are all examples of labels, whereas 4.1.3.7
or 1.3.0.5 are not. Informally, if a label σ is a name of a state w in a model,
then a structure of σ shows what points in this model are the R-ancestors of
w. For instance, the third example of a label (i.e. 1.2.1.1.5) may be read as
a (partial) description of a model, where 1, 1.2, 1.2.1, 1.2.1.1, and 1.2.1.1.5
belong to W, and ordered pairs 〈1, 1.2〉, 〈1.2, 1.2.1〉, ...., 〈1.2.1.1, 1.2.1.1.5〉
belong to R. In general, for any label and its child it means that σ.i is
accessible from σ by R.

The set of labelled formulae (or shortly l-formulae) – LFOR is defined
as follows:
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Definition 8.2 (Labelled Formulae – LFOR) If ϕ ∈ FOR of LM,
and σ ∈ LAB, then σ : ϕ is labelled formula (σ : ϕ ∈ LFOR).

In what follows l-formulae will be represented by A,B,C, and their sets
by X,Y, Z. LAB(X) stands for the set of all labels of l-formulae in X, and
FOR(X) for the set of all formulae from X but with deleted labels.

Intuitively σ : ϕ means that ϕ is satisfied at a point of a model denoted
by σ.

Introducing 1 as the fixed first item of every label is strictly speaking
not necessary. There are systems, e.g. SC-like system of Leszczyńska [175],
where labels are essentially Fitting’s style, but this requirement is not sat-
isfied, at least locally. But insistence on having the root label simplifies
adequacy proofs because the set of labels of any derivation has some impor-
tant property:

Definition 8.3 (Strongly Generated Set) Let X be a set of l-formulae,
then LAB(X) is strongly generated, iff:

• There is some root-label (namely 1).

• For any label σ, such that | σ | ≥ 2, its parent also belongs to this set.

If LAB(X) is strongly generated, then X will be also called strongly gener-
ated.

Fitting with the help of such labels (called by him prefixes) obtained
TS’s in Smullyan’s format for many monomodal normal and regular logics.
These prefixed systems were then improved by Massacci [185] and extended
to additional logics as single step tableaux. The difference between these
two variants will be discussed in remarks at the end of Section 8.5; here we
only point out that it is connected with the shape of rules and details of
adequacy proof rather than with the notion of a label. So we will simply call
such TS’s as Fitting’s format of labelled tableaux. A detailed presentation
of this class of systems, under the name explicit systems, is given by Goré
[117].

In many respects labelled systems are superior to other formalizations of
modal logics discussed so far. Fitting’s format tableaux are confluent3 and,
in a sense, analytic (cf. Section 10.1) in contrast to most of the standard
systems. There is also no problems with the formalization of symmetric

3Massacci [186] provides a formal proof of this fact.
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logics which is hard for standard systems. Branches of proof tree in Hintikka
style TS are divided on separated levels corresponding to points of a model.
If we jump to the next point (by application of (πE)) it is impossible to
get back to the preceding one which is essential for symmetric logics. In
Fitting’s approach we may have formulae with different labels as immediate
neighbours on the same branch, and we may walk freely from one point
of a model to another and back again.4 The last point is also realizable in
Kripke format TS’s but at the cost of introducing many trees instead of one.
Labelled systems may be seen as an improvement of the last technique (e.g.
[117] is putting things this way); we have only one tree (as in Hintikka style
TS’s), but labels give us more freedom in walking on the states of attempted
models. This saves confluency because we do not loose any information (as
we do in Hintikka TS). In consequence, we always need only one proof-
tree, whereas in Hintikka style TS for establishing satisfiability (invalidity
of a root-formula) we are usually forced to construct many open tableaux
as building blocks of a model (cf. remarks on the lack of confluency in
Section 7.2). Shortly, labelled tableaux always need only one tree, Hintikka
TS for validity needs one tree but for satisfiability usually it is not enough,
whereas Kripke’s TS usually needs many trees in both cases. But one should
add that the flexibility of Fitting’s approach has also some costs in case of
implementation for needs of automated deduction; we will explain this claim
in Chapter 10. (in particular, Sections 10.1.2 and 10.5).

Although the original labelled systems mentioned above deal with mono-
modal logics, the technique may be extended to some multimodal cases.
It is unproblematic in case of homogenous logics with no interaction, so
we will provide generally systems for basic normal logics in multimodal
homogenous version. A formalization of interactive logics with the help
of medium labelling generally suffers from some limitations which may be
overcome by strong labelling. We will discuss limitations at the end of the
next Chapter but for the time being we provide systems for some bimodal
temporal logics. By the way, it is rather surprising that labelled systems
for temporal logics were not proposed earlier, taking into account their
simplicity with handling symmetry in models.

Generally, in case of n-modalities we must divide the set of labels onto
n+1 classes. There is a singleton {1} because root-label is neutral and n sets
of other labels corresponding to n accessibility relations. The membership
of a label will be pointed out by inserting [i] (1 ≤ i ≤ n) between a label

4This feature makes Fitting’s approach similar to Suppes’ format ND as compared to
Jaśkowski format – cf. the Remarks in Section 2.4.3.
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and a formula. It means that this label (called i-label) is accessible from its
parent via relation Ri. For instance, if σ.k is an i-label, (i.e. in a derivation
we have for some ϕ, σ.k [ i ] : ϕ, it means that 〈σ, σ.k〉 belongs to Ri. Note
that this solution does not require changes in the definition of a label, or
labelled formula; only pointing out in the description of some rules to which
class a label belongs. For example: let ϕ := p ∧ q, i := 3 and σ := 1.2.1,
then a clause “σ : ϕ, where σ is i-label” is a metalinguistic description of a
formula “1.2.1 [3] : p∧ q”. Clearly, in case of monomodal logics, there is no
need to use these additional devices; we will make use of that in examples
taken usually from monomodal logics. But we will make a substantial use
of this device with respect to bimodal temporal logics. In this particular
case all children labels (except 1) will be divided into sons (F -labels) and
daughters (P -Labels) by inserting [F ] or [P ] between a label and its formula.
Since we prefer models with one flow-time relation <, this division serves
to indicate the direction of a relation. If σ.i is an F -label, it means that
σ < σ.i; if σ.i is a P -label, it means that σ.i < σ. One should note that so
defined sets of labels for multimodal logics are also strongly generated.

One may find some other (medium) labeled systems for multimodal log-
ics, using more complicated labels where the additional information is in-
cluded in the structure of a label. Such a solution may be found in Bonette
and Goré [49] SC for Kt, where they keep track of the direction of time
flow in each item in their labels. Also Fitting [97] uses similar labels in TS
for epistemic logics; each item (except the last) is a pair: a number and a
name of an agent who “sees” the next item. Other solutions are also pos-
sible, e.g., Marx’ system [182] where labels are pairs of natural numbers;
we do not present this approach because it is used in the formalization of
logics not discussed in this book. Our solution, first presented in [151], is
simpler since we keep an information concerning time flow (or generally, a
type of accessibility relation) as an extra sign, not contained in the labels
themselves. Due to the one-step character of rules we will provide (c.f. next
sections; in particular, remarks on alternative rules), it is sufficient to mark
the direction only with respect to the last two digits in a label.

Finally, we should say that the technique of Fitting’s labels is essentially
independent of the kind of deductive system at use; it is rather accidental
that usually it goes with tableaux.5 In this and the next chapters it will be
applied to ND systems.

5Although not always; for example Tapscott [271] is using essentially Fitting’s labels
in ND-system.
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8.4 Labelled ND-K

In the next three sections we introduce labelled versions of ND system for
many modal logics. We still keep KM as our basis but we call the system
more generally LND since the proposed solution is in fact format-insensitive.
In particular, no strict subderivations are demanded since their role is per-
formed by labels. The reader preferring other ND format may easily adapt
the calculus introduced below to other form of realization, or even trans-
form it into S-system. We investigate only LND based on the kind of labels
introduced in the preceding section. There are at least three reasons for
paying an attention to such a solution:

• The additional technical apparatus of Fitting’s labels is kept in rea-
sonable limits, so we may still claim convincingly that ND system of
this sort is natural and simple.

• Despite some limitations, it strongly extends the scope of application
of ND covering many logics hardly formalizable in standard Fitch’s
approach.

• It may be easily modified to obtain an analytic version which provides
handy decision procedures for many modal logics. We will focus on
this question in Chapter 10, where several proof search procedures will
be examined.

8.4.1 LND System for K

We start with LND for homogenous multimodal version of K. Primitive
rules of LND for K are divided as usual into two groups.

Inference rules:

(LαE) σ : α / σ : αi, where i ∈ {1, 2}
(LαI) σ : α1, σ : α2 / σ : α
(LβE) σ : β, σ : −βi / σ : βj , where i �= j ∈ {1, 2}
(LβI) σ : βi / σ : β, where i ∈ {1, 2}
(L¬¬) σ : ¬¬ϕ // σ : ϕ
(L⊥I) σ : ϕ, σ : −ϕ / ⊥
(L⊥E) ⊥ / σ : ϕ, for any σ and ϕ
(LπE) σ : πi / σ.k : π, where σ.k is a new i-label in a derivation
(LπI) σ.k : π / σ : πi, where σ.k is any i-label in a derivation
(LνE) σ : νi / σ.k : ν, where σ.k is any i-label in a derivation
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Proof construction rules:

[LCOND]: If X, σ : −βi � σ : βj , then X � σ : β,
where i �= j ∈ {1, 2}

[LRED]: If X, σ : ϕ � ⊥, then X � σ : −ϕ
[LNEC]: If X, σ.k : � � σ.k : ν, then X, � σ : νi,

where σ.k is a new i-label in a derivation

It is evident that rules for extensional constants do not differ essentially
from nonlabelled version introduced in Chapter 2, since no operations on
labels are performed (clearly it must be the same label for all premises and
conclusion). Such rules will be called static (no move beyond given label)
in contrast to rules for modal constants, called transfer rules because some
operation is performed on labels (i.e. a move from one label to another).

Both modal elimination rules are due to Fitting, whereas rules of intro-
duction (including [LNEC] which is just a multimodal version of [L�I]) are
essentially from Basin/Matthews/Vigano system, with a slight modification.
The lack of r-formulae forces us in [LNEC] to introduce, in a subproof, an
“empty” assumption σ.k : �. It should be noted that the introduction of
this assumption is obligatory if we want to close this subproof by [LNEC],
on the other hand, one should note that this subproof is not strict, in con-
trast to its counterpart in Fitch’s approach. Generally, since all subproofs
are ordinary, we again resign from explicit use of any reiteration rule in the
realization of LND systems, but we continue to use Jaśkowski’s format in
the version of Kalish/Montague. Accordingly, the schema of [LNEC] looks
as follows in this realization:

D
i SHØW: σ : νi
i+ 1 σ.k[ i ] : �

·
·
·

n σ.k[ i ] : ν

where: X ⊆U(D), and σ.k is a new i-label.

We may extend this system to cover both local and global deducibility
of ϕ from assumptions. If ψ is a local assumption, then we may always add
1 : ψ to a derivation; if ψ is a global assumption, then we may always add
to a derivation σ : ψ for any label σ which occurs in a derivation.6

6A justification for such rules may be found in [93].
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We do not provide a formal definition of a derivation; it may be done
along the lines of the definition from Section 2.5.3 �LND−K ϕ means that
there is a proof (a closed derivation) of ϕ in LND-K. Here is an example of
such a proof in monomodal K:

1 SHØW: 1 : �♦p ∧ ��q → �♦(p ∧ q) [5, LCOND]
2 1 : �♦p ∧ ��q ass.
3 1 : �♦p (2, LαE)
4 1 : ��q (2, LαE)
5 SHØW: 1 : �♦(p ∧ q) [12, LNEC]
6 1.1 : � m.ass
7 1.1 : ♦p (3, LνE)
8 1.1 : �q (4, LνE)
9 1.1.1 : p (7, LπE)
10 1.1.1 : q (8, LνE)
11 1.1.1 : p ∧ q (9, 10, LαI)
12 1.1 : ♦(p ∧ q) (11, LπI)

To demonstrate a completeness of LND-K we must only prove the ax-
ioms of K, which is simple. To show that it is closed under (RG) it is
sufficient to observe that whenever we have a proof of ϕ in LND, then we
may transform it into a proof of �iϕ by suitable rewriting of labels in a
proof of ϕ. As the first two lines of a new proof we write down SHOW:
1 : �iϕ and an assumption 1.1 [ i ] : �; then we insert a proof of ϕ, in which
every label σ is renamed into 1.σ. It is enough to close the main subproof
by [LNEC]. So it holds:

Theorem 8.1 (Completeness of LND-K) If |=K ϕ, then �LND−K ϕ

Soundness proofs provided for labelled tableau systems (e.g. in [93, 186,
117]) may be applied also for LND. Because they are considerably different
from soundness proofs proposed in this book, we rather keep the general
strategy applied so far. In order to prove the soundness of our system in the
similar way as in Chapter 2 we need however some new notions permitting
suitable generalization. Although we demonstrate it in this section only for
K, the definitions will be stated for any (multi-)modal logic L in order to
prepare the ground for extensions.

Definition 8.4 (Interpretation and satisfaction) Let X be strongly
generated set, and M = 〈W, {Ri}, V 〉 any L-model: an interpretation of
X in M is a function �:LAB(X)−→ W satisfying condition:
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if σ and σ.k belong to LAB(X) and σ.k is i-label, then 〈�(σ),�(σ.k)〉 ∈ Ri.
X is L-satisfiable under interpretation �, if �(σ) � ϕ for every σ : ϕ ∈ X

X is L-satisfiable, if it is L-satisfiable under some interpretation �.

Let us introduce a generalized notion of labelled (local) entailment:

|=LAB
L ⊆ P(LFOR) × LFOR.

Definition 8.5 (Labelled Entailment) Let Y be strongly generated set,
and X ∪ {τ : ϕ} ⊆ Y , then: X |=LAB

L τ : ϕ iff for any L-model and
interpretation, if X is L-satisfiable, then τ : ϕ is also L-satisfiable under the
same interpretation, namely:

∀M∈MOD(L)∀� ( if ∀σ:ψ∈X�(σ) � ψ , then �(τ) � ϕ)

We may now redefine key semantic properties of rules in terms of labelled
entailment.

Definition 8.6 (Correctness of rules) Let Z be a strongly generated
set, and X ∪ Y ∪ {A,B} ⊆ Z, then:

1. A rule of inference X / A is L-(LAB)normal iff, X |=LAB
L A

2. A rule of proof construction “ifX � A, then Y � B” is L-(LAB)normality
preserving iff, whenever X |=LAB

L A, then Y |=LAB
L B

It is easy to demonstrate the following two lemmata:

Lemma 8.1 Every inference rule in LND-K is K-(LAB)normal

Proof Let’s consider the case of (LπI). Assume indirectly that for some
model and interpretation we have �(σ.k) � π, but �(σ) � πi, where σ.k
is an i-label. Since �(σ) � πi, then no w which satisfies π is Ri-accessible
from �(σ). But �(σ.k) is such a point – contradiction, so (LπI) is K-
(LAB)normal.

Other cases are similar.

Lemma 8.2 Every rule of proof construction in LND-K is K-(LAB)norma-
lity preserving.
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Proof We consider the case of [LNEC]. By assumption, X,σ.k : � |=LAB
K

σ.k : ν and for any τ : ϕ ∈ X, �(τ) � ϕ under any interpretation �; we
must show that �(σ) � νi. It means showing that w � ν, for any w such
that Ri(�(σ), w). Let w be an arbitrary such world, since σ.k does not
belong to LAB(X), then we may extend � letting w = �(σ.k). Clearly,
w � � (it holds for every point) so, by assumption, w � ν which means that
X |=LAB

K σ : νi.

Both lemmata are sufficient for demonstrating soundness of multimodal
LND-K along the lines of the proof given in Chapter 2. So we have:

Theorem 8.2 (Soundness of LND-K) If �LND−K ϕ , then |=K ϕ

Remark 8.3 (Other proof construction rules) One may note that
instead of inference rule (LπI) we may use suitable proof construction rule
on a pair with [LNEC], similarly as we did in standard ND. We mean the
following one:

[LPOS]: If X, σ : πi1, σ.k : π1 � σ.k : π2, then X, σ : πi1 � σ : πi2, where
σ.k is a new i-label in a derivation.

A system with this rule is equivalent to our official one with (LπI). That
every subproof closed by [LPOS] is eliminable in favor of (LπI) (preceded
by the application of (LπE) on σ : πi1 introducing a new label σ.k) is obvious.
In the other direction, note that every application of (LπI) on, e.g. σ.k : ϕ,
must have been preceded by the application of (LπE) on, e.g. σ : ♦ψ, which
introduced σ.k. Let D be the part of a proof ending with σ : ♦ψ and D′ be
the part of a proof with the first line σ.k : ψ (the conclusion of this (LπE)
application) and the last line σ.k : ϕ (the premise of analyzed application
of (LπI)). We may take D, add “SHØW: σ : ♦ϕ” and put D′ in a box
immediately below. One may easily check that it is a correct application
of [LPOS] with ψ = π1 and ϕ = π2. Clearly, it is also possible to define a
counterpart of [♦E] (cf. Section 8.2.2) of Basin/Matthews/Vigano in terms
of Fitting’s labels. We leave it to the reader.

Other combinations are also possible. Tapscott [271] presented a labelled
ND-systems for T, B, S4, S5. In his system there are two specific trans-
fer rules for introducing modal assumption and for closing a subderivation
which may be stated (to comply with our form of presentation) as follows:

(Advancement) If there is U-formula σ : ♦ϕ, then start a subderivation
with an assumption σ.k : ϕ, where σ.k is new in a derivation.
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[Impossibilitation] If ⊥ was inferred in a subderivation with assumption
σ.k : ϕ, where σ.k is new in a derivation, then close this subderivation
introducing σ : ¬♦ϕ as a new U-formula.

It is easy to note that they work together, hence they are just realization
of one proof construction rule which on the level of a calculus may be stated
as follows:

[Impossibility I] IfX, σ : ♦ϕ, σ.k : ϕ � ⊥, thenX, σ : ♦ϕ � σ : ¬♦ϕ

The specific shape of Tapscott’s rules follows from the fact that they
are modelled directly for a system which is used as ND realization of some
proof-search procedure. ♣

8.5 Other Logics

This approach is quite extensive – in fact much more extensive than tableau
systems from [93, 185] or [117] may suggest. In this section we adopt ready
rules for basic normal logics from labelled TS’s to LND and discuss some
variations of them. Direct extensions to some temporal logics and to first-
order logics will be also included. In the next sections and chapters more
substantial modifications will be provided to capture also weak modal logics
and (temporal) logics of linear frames.

8.5.1 Basic Normal Logics

The following list contains inference rules sufficient to formalization of all
basic normal logics in a modular way. They come from Massacci [185, 186]
where they are stated for monomodal logics. Except (LT ) and (LD) all
other are transfer rules. Because every rule has in premises some ν-formula
we will call them collectively as ν-rules.

(LD) σ : �iϕ / σ : ♦iϕ and σ : ¬♦iϕ / σ : ¬�iϕ
(LT ) σ : νi / σ : ν
(L4) σ : νi / σ.k : νi, where σ.k is any i-label in a derivation
(LB) σ.k : νi / σ : ν, where σ.k is any i-label in a derivation
(LB4) σ.k : νi / σ : νi, where σ.k is any i-label in a derivation
(L5�) 1.k : νi / 1 : �iν

i, where 1.k is any i-label in a derivation
(L5.4) σ : νi / σ.k : νi, where | σ | >1 and σ.k is any i-label

in a derivation
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Formalizations of all basic normal logics may be obtained in the following
way:

D LND-K∪{(D)} KD5 LND-K5∪{(D)}
T LND-K∪{(T )} S4 LND-T∪{(4)}
K4 LND-K∪{(4)} B LND-T∪{(B)}
KB LND-K∪{(B)} KB4 LND-KB∪{(4), (B4)}
K5 LND-K∪{(B4), (5�), (5.4)} K45 LND-K4∪{(5�), (5.4)}
KD4 LND-D∪{(4)} KD45 LND-K45∪{(D)}
KDB LND-D∪{(B)} S5 LND-S4∪{(B4)}

Proof of soundness requires only showing that all the rules are L-(LAB)normal
in suitable logic; one can find them e.g. in Goré [117]. For completeness we
must only prove suitable axioms of L, we leave it to the reader. Hence we
state:

Theorem 8.3 (Adequacy of LND-L) For every basic normal (homoge-
nous multimodal) logic L it holds: |=L ϕ iff �LND−L ϕ

For the sake of illustration we prove 5 in LND-K5.

1 SHØW: 1 : ♦p→ �♦p [4, LCOND]
2 1 : ♦p ass.
3 1.1 : p (2, LπE)
4 SHØW: 1 : �♦p [6, LNEC]
5 1.2 : � m.ass.
6 SHØW: 1.2 : ♦p [9, LRED]
7 1.2 : ¬♦p ass.
8 1 : ¬♦p (7, LB4)
9 ⊥ (2, 8, L⊥I)

8.5.2 Regular Basic Logics

This approach may be extended to all basic regular logics we have consid-
ered. It is enough to change a bit two rules. In (LπE) we should add a
proviso that there is some ν-formula with label σ in a derivation,7 or restate
the rule introducing this formula as an additional premise:

(LπE′) σ : νi, σ : πi / σ.k : π, where σ.k is a new i-label in a derivation
7This is essentially the solution of Fitting [93].
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Similarly for [LNEC] we must have some (other) νi as U-formula in
outer derivation if we want to close a subproof by this rule. Because of
that, instead of using � as a premise, we make use of immediate component
of respective νi. So we admit the following rule of proof construction:

[LNECR]: If X, σ : νi1, σ.k : ν1 � σ.k : ν2, then X, σ : νi1 � σ : νi2, where
σ.k is a new i-label in a derivation.

One may easily note that these two rules are correct in R; a careful
reader can make suitable adjustments in proofs of adequacy stated above.8

Note that the notion of interpretation does not change, we only restrict
consideration to regular models. All other rules are correct, including rules
for serial, reflexive and transitive extensions. As for completeness one may
show that we can simulate every application of (RM) similarly as we did it
for (RG), by embedding a proof D of ϕ→ ψ into additional two boxes and
renaming labels of D. A new proof-schema looks like this:

1 SHØW: 1 : �ϕ→ �ψ [3, LCOND]
2 1 : �ϕ ass.
3 SHØW: 1 : �ψ [n,LNECR]
4 1.1 : ϕ ass.
5 SHØW: 1.1 : ϕ→ ψ

D′[σ/1.σ]
n 1.1 : ψ (4, 5, LβE)

where D′[σ/1.σ] is an exact copy of D but with every label σ replaced with
1.σ.

As a result we have an adequacy theorem for LND-L, where L is one of
the regular basic logics described in Chapter 5.

8.5.3 Temporal Logics

A formalization of temporal logics (and other interactive multimodal logics)
requires additional rules. Indrzejczak [151] provides the formalization of Kt,
where except rules for bimodal K with i ∈ {P, F}, we have the following
ν-rules:

8By the way, in regular logics we may even get rid of (LπE′) if we admit [LPOS] from
Remark 8.3. as primitive, but we left the proof of this fact to the reader.
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(LBνi) σ.k : νi / σ : ν, where σ.k is any j-label in a derivation and
i �= j ∈ {P, F}

For Kt4 we must clearly add:

(LB4νi) σ.k : νi / σ : νi, where σ.k is any j-label in a derivation and
i �= j ∈ {P, F}

We may also add rules for seriality for both modalities or only one of
them.

Here is an example of a proof in LND-Kt:

1 SHØW: 1 : p ∧ Fq → F (Pp ∧ q) [11, LRED]
2 1 : ¬(p ∧ Fq → F (Pp ∧ q)) ass.
3 1 : p ∧ Fq (2, LαE)
4 1 : ¬F (Pp ∧ q) (2, LαE)
5 1 : p (3, LαE)
6 1 : Fq (3, LαE)
7 1.1[F ] : q (6, LπFE)
8 1.1[F ] : ¬(Pp ∧ q) (4, LνFE)
9 1.1[F ] : ¬Pp (7, 8, LβE)
10 1 : ¬p (9, LBνP )
11 ⊥ (5, 10, L⊥I)

Showing (LAB)normality of these rules demands a small modification of
the definition of interpretation:

Definition 8.7 (Temporal Interpretation) LetX be strongly generated
set and M = 〈T , <, V 〉 be any L-model: an interpretation of X in M is
a function �:LAB(X)−→ T satisfying condition: if σ and σ.k belong to
LAB(X), then:

(a) if σ.k is F -label (a son), then �(σ) < �(σ.k).
(b) if σ.k is P -label (a daughter), then �(σ.k) < �(σ).

With this adjustment we may easily prove soundness and completeness
of this formalization similarly as in the preceding cases. Hence LND-L is
adequate for L∈ {Kt,Kt4,KtD,KtD4}. LND-systems for logics of linear
time will be considered in the next Chapter.
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8.5.4 Some Other Logics

We briefly discuss some other extensions which are easily obtainable in
this framework. First, it is easy to formalize all the logics considered in
Section 7.1.1 which are axiomatized with the help of �D, �T , �B or �4
(cf. Massacci [185]). It is enough to add to rules (LD), (LT ), (LB) and (L4)
a side condition that they are applicable if | σ | >1.

With the help of Fitting’s labels one may formalize also logics of prov-
ability. Goré [117] proposes the following two rules9:

(LπG) σ : ¬�ϕ / σ.k : ¬ϕ , σ.k : �ϕ, where σ.k is a new label
(LπGrz) σ : ¬�ϕ / σ.k : ¬ϕ , σ.k : �(ϕ→ �ϕ),

where σ.k is a new label

After addition of (LπG) to LND-K4 and (LπGrz) to LND-S4 they yield
adequate LND systems for G and Grz. Note that they are not additional
ν-rules but rather alternative rules for (LπE).

An extension to first-order logics is also unproblematic. Note that all
rules for quantifiers are local (no transition to other states is involved), so
it is enough to add a label σ to premises and conclusions of all quantifier
inference rules considered in Chapter 2 in order to obtain suitable static
rules. Similarly for proof construction rules we must add the same label to
all formulae displayed in the schema of the rule. For example, labelled coun-
terparts of both proof construction rules used in formalization of KMGP’
look like this:

[LF∃Ep′ ] If X, σ : ∃xϕ, σ : Ea ∧ ϕ[x/a] � σ : ψ, then
X, σ : ∃xϕ � σ : ψ, provided a is a parameter with no
occurrence in ϕ,ψ and undischarged assumptions

[LFUNIV p′ ] If X, σ : Ea � ϕ[x/a], then X � σ : ∀xϕ,
provided a is a parameter with no occurrence in ϕ and
undischarged assumptions

Fitting in [93] (or with Mendelsohn in [96]) applies a different strategy in
labelled tableaux for logics of varying domains. They provide distinct sort
of parameters for each label, simply by indexing parameters with labels.
But in case we use existence predicate this is superfluous, since instead
of introducing parameters of the form aσ as arguments of predicates we

9The former is in fact present in [93].
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use σ : Ea to convey exactly the same information. The advantage of an
approach represented in this book is that we have a constant set of quantifier
rules established once and for all in Chapter 2 and used throughout with
no changes in standard modal ND (cf. Chapter 6) and with only cosmetic
change (an addition of a label) in LND. As a consequence, adequacy result
holds for LND formalizations of all sorts of QML introduced in Chapter 5.

The list of possible extensions is not complete but some cases, like weak
modal logics or logics of linear frames, require more detailed treatment
because of substantial modifications of rules or interpretation of labels. We
describe the former in the next section and the latter in the next Chapter;
this section we end up with few remarks concerning alternative rules for
basic logics.

Remark 8.4 (Serial Logics) Instead of a static rule (LD) one may use
Fitting’s transfer rule:

(LD′) σ : νi / σ.k : ν, where σ.k is any i-label in a derivation, including
new ones.

We prefer (LD) because it makes a completeness proof for analytic ver-
sion provided in Chapter 10 easier. ♣

Remark 8.5 (Transitive Logics) Also the original Fitting’s rules used
to formalization of transitive logics are different. He has just one such a
rule for every logic of this kind:

(L4′) σ : νi / σ.τ : ν, where | τ |≥ 1

With this rule we can make “long jumps” from one point to the other
which is accessible in long distance, in one step. It is also stronger than
(L4) since it covers also (LνE) as a particular case (this rule is in fact
redundant in S4 because of the presence of (LT )). The rules which we
prefer are due to Massacci [185, 186] and, in contrast to original Fitting’s
rules, are “single step” rules (i.e. we can go only to the point which is
an immediate neighbour). Massacci provides several arguments in favor
of single step rules concerning their modularity and better computational
behaviour. We are not going to repeat them, but rather add one more:
Fitting’s rule is inconvenient for multimodal logics. Note, that the mere
fact that some θ is i-label and an extension of σ, does not guarantee that
it is i-accessible from σ. For example: let θ = σ.k.n be i-label and σ.k be
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j-label for some j �= i. In such a situation, a deduction of θ : ϕ from σ : �iϕ
by (L4′) would be incorrect. If we formalize multimodal logics with the help
of labels where only the transition between the label and its parent-label is
classified (i.e. it is indicated what accessibility relation is involved), then
only “single step” rules of Massacci are admissible. Of course, it is possible
to use more complicated labels, where for each digit in a label we keep track
of the corresponding relation of accessibility; such a solution was applied
e.g. by Goré and Bonette [49]. ♣

Remark 8.6 (Euclidean Logics) It is of some interest why the set of rules
for Euclidean logics (except S5) is so complicated. In case of monomodal
logics we may obtain a suitable formalization much easier; only one rule is
needed:

(L5) σ : νi / τ : ν, where | σ | >1 and | τ | >1

This rule is also of “long jump”, so if we have at least two differ-
ent modalities, then it is incorrect because we have no guarantee that
all other labels are i-accessible from σ. For example, we have a model
M = 〈{1, 1.1, 1.2, 1.3},Ra,Rb〉 with two Euclidean relations, where Ra(1,
1.1), Rb(1, 1.2) and Rb(1, 1.3). Then by Euclidean property we have
Rb(1.3, 1.2) but Rb(1.3, 1.1) does not hold. Yet (L5) allows us to infer
from 1.3 [ b ] : �bϕ both 1.2 [ b ] : ϕ (which is correct) and 1.1 [ a ] : ϕ which
is incorrect. Because of that, in multimodal Euclidean logics, we must also
use only “one step” transfer rules.

Massacci [186] provided also alternative formalizations of Euclidean tran-
sitive logics based on the following rule used instead of (L4):

(L4π) σ.k : πi / σ : πi

Also, instead of (L5�) he considered a more general rule:

(Cxt) σ.k : νi / σ : �iν
i with σ = 1

which provides a formalization of McCarthy’s logic of contextual reasoning
(added to K), but for Euclidean logics, a restricted version is sufficient. ♣

We have provided LND-system in full form with a variety of rules for
introduction and elimination of constants. One should note however that it
may be restricted to an analytic form, similarly as ND-CPL in Chapter 4.
In particular, it is easy to obtain a labelled counterpart of AND1 because
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for most considered logics such restricted ND is sufficient to simulate every
tree in labelled TS’s. We return to this question in Chapter 10.

8.6 LND for Weak Modal Logics

Fitting’s style labels are directly modeled on relational semantics. It is an
interesting question whether this form of labelling can be extended to some
congruent and monotonic modal logics, which are not characterizable by
Kripke frames. But neighbourhood frames are also a kind of more general
relational semantics so it should be possible. For our needs it is important
that the domains in neighbourhood frames are of the same kind as in Kripke
frames which is sufficient to apply labels in the same way, as it is done in
stronger logics – as names for states in a model. The main problem is how
to apply them to cover logics with different interpretation of modalities.

In particular, in normal and regular logics labels correspond in a straight-
forward manner to the structure of an attempted falsifying model. It makes
this method very handy for defining procedures of model extraction. Unfor-
tunately, neigbourhood functions are not as easy to handle as accessibility
relations. But this difficulty may be easily overcome. One possible solution
was provided by the author in [154] for TS; in what follows we apply our
approach to LND systems.

Similarly as in Fitting’s style systems, the label is not only a name of a
state in a model but additionally its structure encodes the place of this state
in a falsifying model we are trying to build. The difference lies in the sense
which is captured by a label of the form σ.k. In our system it means that
for some σ : �ϕ we have σ.i ∈ ‖ϕ‖. We continue using generalized notation
good for multimodal logics although [154] deals only with monomodal case.
As far as we are talking about homogenous logics there is no difference.

Let us consider the following inference rules taken from [154]10:

(LM) σ : νi, σ : πi / σ.k : ν, σ.k : π, where σ.k is a new label
(LMD) σ : νi1, σ : νi2 / σ.k : ν1, σ.k : ν2, where σ.k is a new label
(LM4) σ : νi, σ : πi / σ.k : νi, σ.k : π, where σ.k is a new label
(LM5) σ : πi1, σ : πi2 / σ.k : πi1, σ.k : π2, where σ.k is a new label
(LMB) σ : π1, σ : πi2 / σ.k : πi1, σ.k : π2, where σ.k is a new label
(LMD4) σ : νi1, σ : νi2 / σ.k : ν1, σ.k : νi2, where σ.k is a new label
(LMD5) σ : νi, σ : πi / σ.k : ν, σ.k : πi, where σ.k is a new label

10Except (LMB), since B-logics were not considered in [154] because of the lack of
analytic formalization.
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Note that in all cases we have in fact two rules, since there are two
conclusions stated. In practise we should write both of them in every ap-
plication of a rule, although it is not, strictly speaking, obligatory.

To obtain LND-M we need to add only one inference rule (LM) to a
labelled version of rules for CPL. None of the four modal rules from Sec-
tion 8.4. characterizing K is needed; in fact, they are incorrect in M. For
other basic monotonic logics we must add some of the rules from the above
set – every rule (LMA) corresponds in a modular fashion to a suitable axiom
A. Rules (LMD4) and (LMD5) are in fact not necessary for completeness,
but they are necessary for completeness of an analytic versions of serial
transitive ((LMD4) is needed) and serial Euclidean ((LMD5) is needed)
logics, since they are modeled on SC-rules from Indrzejczak [152] required
for the proof of cut elimination (cf. a discussion in Section 7.2). To obtain
formalizations of reflexive logics we need simply a static rule (LT ),11 more-
over, we may add (LπE) to all these ND systems and obtain in this way
formalizations of all basic monotonic logics with necessitation (or Gödel’s)
rule (RG) – 30 logics in total.

Completeness of our LND systems for monotonic logics is easy to es-
tablish. A simulation of (RM) with the help of (LM) is similar as in case
of regular logics (by twice boxing of a given proof and renaming labels).
Proofs of interdefinability of ♦ and �, and of all axioms, with the help of
suitable rules is straightforward. In order to prove soundness we must first
change a bit definitions of interpretation and satisfiability.

Definition 8.8 (Neighbourhood Interpretation) Let X be a set of la-
belled formulae and M = 〈W,N ,V〉 a neighbourhood L-model. X is sat-
isfiable in M if there is an interpretation function �:LAB(X) −→ W such
that:

• if σ and σ.k belong to LAB(X), then �(σ.k) ∈ ‖ϕ‖ for some σ : �ϕ ∈
X

• if σ : ϕ ∈ X, then �(σ) � ϕ.

Lemma 8.3 Every inference rule for monotonic logics is (LAB)normal for
respective logic.

Proof We will demonstrate two cases: (LM) and (LMD5):
11In fact, we may also use a static rule (LD) stated above for normal and regular logics

instead of a transfer rule from the list.
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Assume that σ : �ϕ and σ : ¬�ψ are satisfied, i.e. �(σ) � �ϕ and
�(σ) � ¬�ψ in some model. By definition of a model we have that ‖ϕ‖ ∈
N (�(σ)) and ‖ψ‖ /∈ N (�(σ)). By condition (m) this implies ‖ϕ‖ � ‖ψ‖,
so there is a world w′ such that w′ � ϕ and w′

� ψ. We can extend � to
�′ by letting �′(σ.k) = w′, since σ.k is not in LAB(X) (it is a new label
introduced by an application of (LM). Then �′ is also an interpretation
satisfying both σ.k : ϕ and σ.k : ¬ψ.

In case of (LMD5) assume that σ : �ϕ and σ : ¬�ψ are satisfied. So,
as in the previous case, we have that ‖ϕ‖ ∈ N (�(σ)) and ‖ψ‖ /∈ N (�(σ)).
By condition (5), we have {�(σ′) : ‖ψ‖ /∈ N (�(σ′))} ∈ N (�(σ)) which
means that {�(σ′) : �(σ′) � �ψ} ∈ N (�(σ)), which means that ‖¬�ψ‖ ∈
N (�(σ)). By condition (d) ‖¬ϕ‖ /∈ N (�(σ)). By condition (m) ‖¬�ψ‖ �

‖¬ϕ‖, so there is w′ such that w′ � ¬�ψ and w′
� ¬ϕ. We can extend � to

�′ by letting �′(σ.k) = w′, for new σ.k introduced by (LMD5). Then �′ is
also an MD5-interpretation satisfying both σ.k : ϕ and σ.k : ¬�ψ.

(LAB)normality of all the rules (with respect to suitable classes of mod-
els) is enough to provide soundness proof for our systems, so we have:

Theorem 8.4 (Adequacy of LND-L) For all basic monotonic (homoge-
nous multimodal) logics L (including those closed under (RG)) it holds:
|=L ϕ iff �LND−L ϕ

One may note that we can obtain formalizations of suitable regular logics
just by addition of (LνE) to any LND system for monotonic logic without
(LMB), (LM5), (LπE). That these three rules are enough to obtain normal
logics if (LνE) is present, is obvious from the previous considerations.

The proposed formalization of monotonic basic logics is simple in prac-
tice, and may be easily used to obtain complete analytic versions in many
cases (Indrzejczak [154] provides decision procedures on the basis of labelled
TS for 18 monotonic basic logics). But from the standpoint of architecture
of ND-systems it may seem worse than formalization provided in the pre-
ceding sections. Clearly, we may obtain ND-system for M of more ordinary
character if instead of (LM) we use two proof construction rules: [LNEC]
in the version for regular logics, and [LPOS] from Remark 8.3. We do not
justify our claim; that it is correct should be evident for any careful reader
of Chapter 6 (Section 6.5), since these rules are exact labelled counterparts
of rules stated there (in particular, the lack of (LνE) plays the function
of the lack of reiteration into strict subproofs). So such proof construction
rules of LND just simulate suitable rules of standard ND. Interested reader
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may consider similar transformation of other inference rules into proof con-
struction rules in accordance with the recipe stated in Section 6.5.

It is evident that our approach to LND for monotonic modal logics is
based on labelled TS from [154], and the latter is modeled on standard
SC rules presented in Chapter 6. The same applies to congruent logics, so
one may first recall these SC-rules to grasp the idea intuitively. All SC-
rules (except (T )) for this class of basic logics have two premises; their TS
counterparts in [154] are (binary-)branching rules of the form:

(LE2) σ : �ϕ, σ : ¬�ψ / σ.k : ϕ, σ.k : ¬ψ | σ.k : ¬ϕ, σ.k : ψ
(LD2) σ : �ϕ, σ : �ψ / σ.k : ϕ, σ.k : ψ | σ.k : ¬ϕ, σ.k : ¬ψ
(L42) σ : �ϕ, σ : ¬�ψ / σ.k : �ϕ, σ.k : ¬ψ | σ.k : ¬�ϕ, σ.k : ψ
(L52) σ : ¬�ϕ, σ : ¬�ψ / σ.k : ¬�ϕ, σ.k : ¬ψ | σ.k : �ϕ, σ.k : ψ
(LB2) σ : ¬ϕ, σ : ¬�ψ / σ.k : ¬�ϕ, σ.k : ¬ψ | σ.k : �ϕ, σ.k : ψ

where σ.k is a new label in all cases

We have already shown how to simulate binary branching rules in ND
(Chapter 4) but also analyzed the problem of transformation of such rules
in ND for modal logics in case they lose some data. In the context of
labelled systems this problem disappears and we may apply our technique
of converting branching rules into proof construction rules with no difficulty.
We will do it in one step. First, all the rules are instances of just one schema
(where σ.k is a new label, and A is one of the {E,D, 4, 5, B}):

(LA2) σ : ϕ, σ : ψ / σ.k : ϕ′, σ.k : ψ′ | σ.k : −ϕ′, σ.k : −ψ′

It is converted into a schema of proof construction rule:

[LA2] If X, σ : ϕ, σ : ψ, σ.k : −ϕ′ ∧−ψ′ � ⊥, then X, σ : ϕ, σ : ψ �
σ.k : ϕ′ ∧ ψ′

where σ.k is a new label and ∧ was used to combine two pairs of conclusions
of (LA2)

It is characteristic for all these rules that we introduce immediately
S-formula and the corresponding assumption for performing [LA2] on the
basis of two modal U-formulae present in the current subderivation (except
(LB2), where one formula is not necessarily modal). To obtain LND-E
one must add only [LE2] to classical basis; for remaining ones also other
instances of [LA2] are necessary (and for congruent logics axiomatized with
T also an inference rule (LT )). To cover congruent logics closed under (RG)
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one should add (LπE), similarly as in monotonic case. We leave the details
of a formulation suitable for realization in KM, providing only a diagram of
application of [LA2] for illustration:

X
i σ : ϕ

...
j σ : ψ

...
k SHØW: σ.k : ϕ′ ∧ ψ′ [n,LA2]
k + 1 σ.k : −ϕ′ ∧ −ψ′ ass.

...
n ⊥

We leave to the reader proofs of (LAB)normality preservation of all these
rules in respective neighborhood models (use the definition of interpretation
formulated for monotonic logics) required for soundness proof. Complete-
ness demands proofs of axioms and closure under (RE). The following
schema shows how application of [LE2] simulates (RE):

1 SHØW: 1 : �ϕ→ �ψ [3, LCOND]
2 1 : �ϕ ass.
3 SHØW: 1 : �ψ [k + 1, LRED]
4 1 : ¬�ψ ass.
5 SHØW: 1.1 : ϕ ∧ ¬ψ [i+ 1, LE2]
6 1.1 : ¬ϕ ∧ ψ ass.
7 1.1 : ¬ϕ (6, LαE)
8 1.1 : ψ (6, LαE)
9 SHØW: 1.1 : ϕ↔ ψ

D[σ/1.σ]
i 1.1 : ϕ (8, 9)
i+ 1 ⊥ (7, i, L⊥I)
i+ 2 1.1 : ϕ (5, LαE)
i+ 3 1.1 : ¬ψ (5, LαE)
i+ 4 SHØW: 1.1 : ϕ↔ ψ

D[σ/1.σ]
k 1.1 : ψ (i+ 2, i+ 4)
k + 1 ⊥ (i+ 3, k, L⊥I)
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Here we must use the assumed proof (with renamed labels) of ϕ ↔ ψ
twice to obtain a result. The proof of �ψ → �ϕ is analogical, hence we got
a proof of �ϕ↔ �ψ on the basis of an earlier proof of ϕ↔ ψ which shows
that our formalization is complete. Thus we obtain:

Theorem 8.5 (Adequacy of LND-L) For all basic congruent (homoge-
nous multimodal) logics L (including those closed under (RG)) it holds:
|=L ϕ iff �LND−L ϕ

8.7 MRND Systems with Labels

Fitting’s approach may be extended to clausal ND in at least two ways.
The simplest way of combining RND with labels is to admit that in all
contexts we deal with labelled formulae; in particular, clauses are built from
formulae with labels. Such an application of labels will be called local and
suitable systems, called LLRND (locally labelled RND), will be considered
first. But it is also possible to add labels to whole clauses.12 Such labels
have global character since they qualify the set of formulae, and the system
of this sort will be called GLRND (globally labelled RND). For keeping
presentation in reasonable bounds we restrict our attention to propositional
basic normal and the the simplest temporal logics, although this approach
may be extended further. We invite the reader to experimentation.

8.7.1 Local Labelling

One should note that in this subsection Γ, Δ denote clauses built from
labelled formulae and X,Y denote the sets of so defined clauses. With this
proviso we may redefine all RND inference rules for classical connectives in
a straightforward way:

(LLW ) Γ / Γ, σ : ϕ
(LLRes) Γ, σ : ϕ ; Γ, σ : −ϕ / Γ
(LL¬¬) Γ, σ : ¬¬ϕ // Γ, σ : ϕ
(LLα) Γ, σ : α // Γ, σ : α1 ; Γ, σ : α2

(LLβ) Γ, σ : β // Γ, σ : β1, σ : β2

12A similar solution was applied in Mints [191] by addition of Fitting’s labels to whole
sequents in his version of (labelled) hipersequent calculi.
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The rule [SUB] may be rewritten without any change, if we remember
that each ϕi in the schema is meant as a labelled element of Γ and if ϕi =
σ : ψ, then by −ϕi we mean σ : −ψ.

Now, if we replace a rule (Exp-A) from Section 7.4 with (LExp-A)
Γ, σ : ϕ / Γ, σ : ψ, or (Res-A) with (LRes-A) Γ, σ : ϕ ; Δ, σ : −ψ / Γ,Δ,
we may keep the same ϕ and ψ as in the table from Section 7.4.2, but
labels are nothing more than an adornment. Moreover, without [CNEC]
or [CPOS] (redefined for labelled formulae) we lose completeness. But
we can do better – due to labels we can get rid of strict subderivations and
additional proof construction rules, except [SUB]. We need just one general
rule for π-formulae:

(LLπi) Γ, σ : πi / Γ, σ.k : π, where σ.k is a new i-label in a derivation

Here, the introduction of a new label by π-formula clearly corresponds to
the creation of a strict subderivation by [CPOS] in MRND. The rule itself is
an obvious clausal generalization of (LπE) from LND. To get a formalization
of K and their extensions we use (locally) labelled counterparts of expansion
or resolution rules stated for MRND. Schemata of both rules (LLExp-A)
and (LLRes-A) are the same as in nonlabelled case, namely:

Γ, ϕ / Γ, ψ or Γ, ϕ ; Δ,−ψ / Γ,Δ

but now, both ϕ and ψ are labelled formulae, and not only formulae them-
selves are different (defined suitably for each axiom A) but also the label of ϕ
may differ from the label of ψ. For logics based on axioms like D,DC, T, TC
and 4C we may keep ϕ and ψ as in the table from Section 7.4.2 with the
same label σ added to both formulae. For the rest, including K, we display
suitable candidates in the table below, but this time, in the first column,
we have sometimes two axioms as a counterpart of a rule:

Axiom ϕ ψ Side condition
K σ : νi σ.k : ν σ.k any i-label
4 σ : νi σ.k : νi σ.k any i-label
5 σ : νi τ : ν | σ | >1 and | τ | >1
B σ.k : νi σ : ν σ.k any i-label

B + 4 σ.k : νi σ : νi σ.k any i-label
B-Te σ.k : νi σ : ν σ.k is j-label and i �= j ∈ {F, P}

B-Te+ 4 σ.k : νi σ : νi σ.k is j-label and i �= j ∈ {F, P}
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In the table we have listed the substitutes we must put in the places
of ϕ and ψ in our (LLExp-A) or (LLRes-A) rules, remembering that in
the latter we use −ψ. (LLExp-K) as an expansion- or (LLRes-K) as a
resolution rule, is our basic ν-rule which, together with (LLπi), yields a
complete formalization of LLRND-K. In order to obtain extensions we must
add either (LLExp-A) or (LLRes-A) for suitable axiom A. But this time
we must remember that for every logic axiomatized by B and 4 we must
add also a rule for B + 4, whereas for every temporal logic with 4 we must
add also respective rule for B-Te+ 4. In this way we cover the same logics
which were formalized by MRND in Chapter 7.

Once again one may easily verify that (LLExp-A) and (LLRes-A) are
mutually interderivable in LLRND; the proof goes exactly as in the nonla-
belled case, hence we simply state the result as a:

Lemma 8.4 (Equivalence of expansion and resolution rules)

1. (LLExp-A) is derivable in LLRND+(LLRes-A)

2. (LLRes-A) is derivable in LLRND+(LLExp-A)

A definition of a derivation for a clause Σ in LLRND is a straightforward
generalization of a definition provided in Chapter 4; we omit the details.
Soundness and completeness of the resulting LLRND-systems follow from
adequacy results stated in Sections 8.4 and 8.5. In particular, for soundness
we apply an interpretation of labels as points in a model as in the Defini-
tion 8.4, and under this interpretation we assume that a clause is satisfied
in a model if at least one element of a clause is satisfied in the value of its
label. One can easily check in this way the (LAB)normality of all the rules,
but note that respective (LLExp-5) is sound only in the monomodal case!

Completeness follows from the fact that instances of (LLExp-A) are
clausal generalizations of the rules from Section 8.5, and that RND is a
generalization of ND. Certainly, proofs of suitable axioms are very easy to
obtain and the reader is encouraged to do it. But one may doubt if LLRND
machinery is sufficient for simulation of (RG) since there are no rules for
an introduction of modal constants. But it is extremely easy to obtain
LLRND proof of νi if we have a proof of ν. The latter must have also some
indirect proof D with 1 : −ν as an assumption and ⊥ as the last line. It is
sufficient to rename all labels σ in D into 1.σ, add 1 : −νi at the beginning
(as an assumption) and change the justification of 1 : −ν (or rather 1.1 : −ν
after renaming of labels in D), since it is now obtained by the application of
(LLπi) to 1 : −νi, and we are done. Thus obtained D′ is a proof (by [SUB])
of νi. It works, in particular, for temporal logics with two (RG) rules.
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Finally, note that in case of transitive symmetric logics (like KB4 or
S5) and transitive temporal logics we need for completeness also additional
rules for B + 4 and B-Te+ 4 respectively. Here is an example of a proof in
LLRND-Kt, showing how these rules work.

1 SHØW: 1 : ¬G(p→ Hq), 1 : Fp→ q [10, SUB]
2 1 : G(p→ Hq) ass.
3 1 : ¬(Fp→ q) ass.
4 1 : Fp (3, LLα)
5 1 : ¬q (3, LLα)
6 1.1[F ] : p (4, LLπi)
7 1.1[F ] : p→ Hq (2, LLExp-K)
8 1.1[F ] : ¬p, 1.1[F ] : Hq (7, LLβ)
9 1.1[F ] : ¬p (5, 8, LLRes-B-Te)
10 ⊥ (6, 9, LLRes)

8.7.2 Global Labelling

In this subsection we make only a small change; we consider clauses built
of ordinary (nonlabelled) formulae with labels attached to the whole clause
instead. Hence labels have a global character and the system of this sort
will be called GLRND. This small change however forces us to make a lot
of further changes in the description of rules. Also, it seems that in conse-
quence there are serious differences in the strategy of making derivations in
LLRND and GLRND.

In GLRND [SUB] is also the only proof construction rule but now we
assume that in the schema, some fixed label σ is preceding Γ,Δ and each
assumption −ϕi; X consists of labelled clauses as well, but their labels may
be different.

The inference rules for GLRND-K are the following:

(GLW ) σ : Γ / σ : Γ, ϕ
(GLRes) σ : Γ, ϕ ; σ : Γ,−ϕ / σ : Γ
(GLα) σ : Γ, α // σ : Γ, α1 ; σ : Γ, α2

(GLβ) σ : Γ, β // σ : Γ, β1, β2

(GL¬¬) σ : Γ,¬¬ϕ // σ : Γ, ϕ
(GLπi) σ : πi1, ..., π

i
n / σ.k : π1, ..., πn,

where σ.k is a new i-label in a derivation
(GLExp-K) σ : νi1, ..., ν

i
n / σ.k : ν1, ..., νn,

where σ.k is any i-label in a derivation
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For logics axiomatized by schemata D,DC, T, TC, 4C we can provide
the pair of rules:

(GLExp-A) σ : Γ, ϕ / σ : Γ, ψ or
(GLRes-A) σ : Γ, ϕ ; σ : Δ,−ψ / σ : Γ,Δ

with ϕ and ψ defined exactly as in the table from Section 7.4.2. Also the
proof of interderivability of these rules is exactly the same. For other logics
the situation is a bit more complicated, so at first we simply display suitable
GL-expansion rules with the variant rule for D which is a generalization of
Fitting’s rule (LD′) discussed in Remark 8.4:

(GLExp-D) σ : νi1, ..., ν
i
n / σ.k : ν1, ..., νn, where

σ.k is any i-label in a derivation, possibly new
(GLExp-4) σ : νi1, ..., ν

i
n / σ.k : νi1, ..., ν

i
n,

where σ.k is any i-label in a derivation
(GLExp-5) σ : νi1, ..., ν

i
n / τ : ν1, ..., νn,

where | σ | >1 and | τ | >1
(GLExp-B) σ.k : νi1, ..., ν

i
n / σ : ν1, ..., νn,

where σ.k is i-label in a derivation
(GLExp-B4) σ.k : νi1, ..., ν

i
n / σ : νi1, ..., ν

i
n,

where σ.k is i-label in a derivation
(GLExp-B-Te) σ.k : νi1, ..., ν

i
n / σ : ν1, ..., νn, where

σ.k is j-label in a derivation and i �= j ∈ {F, P}
(GLExp-B4-Te) σ.k : νi1, ..., ν

i
n / σ : νi1, ..., ν

i
n, where

σ.k is j-label in a derivation and i �= j ∈ {F, P}

We can prove (LAB)normality of all the rules displayed above by means
of the same technique of label interpretation as that applied in Section 8.4,
provided we treat clauses as disjunctions. This is enough for demonstrating
soundness of GLRND. Completeness follows by analogical argument as that
used for LLRND in the preceding subsection.

The system works in a similar vein as a destructive resolution system
of Fitting [94] but labels make GLRND more extensive. Also the format of
RND offers more freedom in proof construction. In particular, since [SEP ]
is an admissible rule of RND (see Chapter 4) and also of GLRND, we do
not need any special rule for breaking down clauses in order to separate a
modal part needed for the application of modal rules.

In order to get a resolution-like characterization we need a pair of rules
for each (GLExp-A) considered above:
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(GLRes′-A) σ : Γ, ϕ ; τ : −ψ / σ : Γ and
(GLRes′′-A) σ : ϕ ; τ : Γ,−ψ / τ : Γ

where labels σ and τ are not necessarily different. Label of a clause con-
taining ϕ and −ψ, as well as these formulae, are defined exactly as in the
table from Section 8.7.1.

In case of GLRND we can also prove the interderivability of (GLExp-
A) with a pair of (GLRes-A) rules but this time a proof is slightly more
involved.

Lemma 8.5 (Equivalence of expansion and resolution rules)

1. (GLExp-A) is derivable in GLRND+(GLRes′-A)+(GLRes′′-A)

2. (GLRes′-A) and (GLRes′′-A) are derivable in GLRND+(GLExp-A)

Proof We will demonstrate the second case. The following schema shows
derivability of (GLRes′-A) by (GLExp-A) with σ : Γ = {σ : χ1, . . . , χk} (if
k = 0, a schema considerably simplifies). The application of a particular
case of the latter rule is correct for every instance of a parameter A, which
may be checked by comparison of each case of ϕ and ψ in the table from
Section 8.7.1 for any A. Derivability of (GLRes′′-A) is similar.

1 σ : Γ, ϕ premise
2 τ : −ψ premise
3 SHØW: σ : Γ [k + k + 5, SUB]
4 σ : −χ1 ass.

...
k + 3 σ : −χk ass.

...
k + k + 3 σ : ϕ (1, 4 − k + 3, GLRes)
k + k + 4 τ : ψ (k + k + 3, GLExp-A)
k + k + 5 ⊥ (2, k + k + 4, GLRes)

For the sake of illustration we display an example of a proof in GLRDN-
K where, for simplicity, we use [SEP ] which, as we remarked above, is
an admissible proof construction rule. Let ϕ be a shorthand for a thesis
(�p→ �q) ∨ (�r → �s) → ¬(�(p ∧ r) ∧ ♦¬(q ∨ s))
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1 SHØW: 1 : ϕ [23, SUB]
2 1 : ¬ϕ ass.
3 1 : (�p→ �q) ∨ (�r → �s) (2, GLα)
4 1 : �(p ∧ r) ∧ ♦¬(q ∨ s) (2, GLα)
5 1 : �(p ∧ r) (4, GLα)
6 1 : ♦¬(q ∨ s) (4, GLα)
7 1 : �p→ �q,�r → �s (3, GLβ)
8 1 : ¬�p,�q,�r → �s (7, GLβ)
9 1 : ¬�p,�q,¬�r,�s (8, GLβ)
10 SHØW: 1 : ¬�p,¬�r [17, SEP ]
11 1 : �q,�s ass.
12 1.1 : ¬(q ∨ s) (6, GLπi)
13 1.1 : q, s (11, GLExp-K)
14 1.1 : ¬q (12, GLα)
15 1.1 : ¬s (12, GLα)
16 1.1 : s (13, 14, GLRes)
17 ⊥ (15, 16, GLRes)
18 1.2 : ¬p,¬r (10, GLπi)
19 1.2 : p ∧ r (5, GLExp-K)
20 1.2 : p (19, GLα)
21 1.2 : r (19, GLα)
22 1.2 : ¬r (18, 20, GLRes)
23 ⊥ (21, 22, GLRes)

Thanks to the introduction of [SEP ] we could immediately break up the
clause from line 9, which contains both π- and ν-formulae, on two clauses (in
lines 10 and 11) containing only modal formulae of one sort. This enabled
an application of (GLExp-K) (line 13), and then (GLπi) (line 18). The
reader may try to prove this thesis only by means of [SUB].

Both variants of LRND are not analytic but may be transformed to an-
alytic form, based only on elimination rules, without losing completeness
(in particular, both versions of weakening ((LLW ) and (GLW )) are elim-
inable). In Chapter 10 we will show completeness of an analytic version
of LND. It is obvious that both proposed versions of LRND may simulate
LND, hence they may be restricted in a similar way. Details of suitable
refinements are left to the reader.



Chapter 9

Logics of Linear Frames

Logics of linear frames, called here for short linear logics,1 form a particu-
larly interesting and important class, especially in temporal interpretation.
But we devote a separate Chapter for their treatment not because of their
importance but rather because of special problems generated by their for-
malization in the setting of labelled systems. We will be dealing with basic
linear logics in monomodal version (K4.3, KD4.3, S4.3) and in bimodal
temporal version (Kt4.3, Kt4D.3 e.t.c.).

Section 9.1 is a survey of several formalizations of linear logics intro-
duced so far. We are particularly interested in the comparison of different
strategies of proof construction and linear model search embodied in the
rules of several systems. It is remarkable that most of the proposed solu-
tions is based on branching rules. Moreover, in some approaches the number
of branches generated by suitable rules is not fixed but exponentially de-
pendent on the number of π-formulae. Because of this feature most of the
solutions cannot be simulated in ND, particularly in Jaśkowski’s format.

The rest of the Chapter is devoted to the presentation of LND system for
linear logics. In contrast to many other systems it is based on nonbranching
rules. First of all, such a solution is more general because it may be applied
not only in ND but also in TS or SC, provided some form of cut is admitted.
Moreover, we will show that the application of nonbranching rules is more
convenient from the standpoint of complexity. In many cases it may lead
to construction of proofs exponentially shorter than corresponding proofs
created by branching rules. In Section 9.2, for the sake of illustration of the

1It shouldn’t cause any misunderstanding, since in this book we do not deal with
Girard’s linear logic.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 297
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basic strategy, we introduce the simplest form of such a system for S4.3. It
is extended to more complex version for Kt4.3 in the next section.

Section 9.4 contains completeness proof for analytic version of our sys-
tem. It must be proved directly since there are no analytic TS’s which may
be simulated by analytic LND, as was the case of logics considered in the
preceding Chapter. The proof is based on relative maximalization of each
label with respect to some predefined finite set of formulae. Although it is
based on constructive proof-search procedure and saves subformula prop-
erty, it is not very practical; in the next Chapter we introduce more efficient
procedures. Finally, we describe some extensions and modifications of this
system in Section 9.5. In particular, we describe two versions of RND for
linear logics, with local and global labels. We also briefly describe how to ex-
tend our approach to obtain a similar formalization of other logics, like S4F
and S4R. It is due to the fact that these logics are determined by frames
defined by syntactically similar conditions (i.e. universal implications).

9.1 Deductive Systems for Logics of Linear Frames

9.1.1 Survey of Systems

Before we present our LND system for logics of linear frames we describe,
and make a comparison of other proposals. They are extensions of systems
introduced in earlier chapters, so we only discuss the rules which serve to
formalization of linearity.

The existing systems for linear modal and temporal logics belong essen-
tially to two kinds of proof systems: tableau systems and sequent systems of
different sorts. The only one resolution system dealing with linearity, known
to me, is due to Fischer, Dixon and Peim [88], but this formalization is based
on the “Next” operator. In what follows we do not consider systems that
formalize logics of linear frames but in different languages based on such
operators like “Until”, “Since” or “Next”, or characterized by different se-
mantics. It means that, for example, TS’s of Wolper [284], Lichtenstein
and Pnuelli [177], Goubault-Larrecq and Schmitt [118], resolution system of
Fischer, Dixon and Peim [88], and strongly labelled ND system of Bolotov,
Basukoski, Grigoriev and Shangin [47], despite their unquestioned value,
will not be discussed.

Below we present a chronological list of solutions for linear logics in
standard languages:
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1. 1971 – Rescher and Urquhart’s TS in [231]

2. 1973 – Zeman’s standard SC in [288]

3. 1991 – Shimura’s standard SC in [252]

4. 1991 – Catach’s automated theorem prover TABLEAUX from [64]

5. 1992 – Wansing’s display calculus; the first version, finally in [280]

6. 1992 – Goré’s TS in [116]

7. 1994 – Indrzejczak’s standard ND in [140]

8. 1994 – Kashima’s nested TS in [161]

9. 2000 – Indrzejczak’s multisequent calculus in [146]

10. 2000 – Marx’, Mikulas’ and Reynolds’ nonstandard TS in [183]

11. 2002 – Indrzejczak’s labelled KE in [149]

12. 2002 – Castellini’s and Smaill’s strongly labelled SC in [63]

13. 2003 – Baldoni’s strongly labelled TS in [18]

14. 2005 – Negri’s strongly labelled SC in [194]

As we will see, their simulation in ND is problematic in many cases,
mainly because of branching character of proposed rules, but it will be
instructive to recall them all before we present our solution. Some systems
for linear logics apply rules, where the number of branches is not constant
but depends on some factor. In fact, these are chronologically the first
formalizations of such logics and we describe them first. Systems that were
invented later usually apply rules with fixed number of branches. Usually it
is possible thanks to more complex character of their deductive machinery.

In order to facilitate a comparison of different approaches we will use
Kashima’s format of tableau for uniform presentation of rules, so the reader
should recall this formalization first (cf. Section 7.5.3). In some cases one
may also consult the original formulation given in previous chapters.
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Multi-Branching Rules

In standard SC and TS’s for modal logics the same approach was applied in
[288, 252, 116]. We have already described suitable rules in Section 7.1.4.
and discussed some disadvantages of this solution. Here we rather focus on
the strategy of (linear) model searching involved in these rules. Basically,
the systems of Zeman, of Shimura and of Goré, realize the strategy of gen-
erating at the same time all linear models admissible at the current stage.
Thus, in case of S4.3, we have a rule which in Kashima’s format looks like
this2:

(¬�E3
K) X[¬�Δ]

X[{¬�Δ1,¬ϕ1}] | . . . | X[{¬�Δn,¬ϕn}]

where: Δ = {ϕ1, . . . , ϕn},Δi = Δ − {ϕi}

It means that if we have at some stage of model construction n unused
π-formulae at some state w (= the set of formulae in a premise), we must
generate n branches, one for each π-formula. We also rewrite in each branch
the remaining n−1 π-formulae as unused. So, every π-formula introduces an
immediate R-successor of w, where the activation of remaining π-formulae
is postponed. This way, every branch which does not close, leads to con-
struction of linear model. This approach was used only to formalization of
monomodal linear logics and it is not evident how it may be extended to
temporal logics. This usually requires some nonstandard system as a ba-
sis; the only exception is Indrzejczak’s ND from [140] for temporal logics,
presented in Section 7.1.5.

The remaining approaches to linear logics are connected with some non-
standard systems. The earliest one is due to Rescher and Urquhart [231] and
applied in the system of boxed tableaux, briefly described in Section 7.5.2.
They also provide a specific π-rule for linearity, but in contrast to Ze-
man/Shimura/Goré approach, their rule applies to only one π-formula at a
time. Anyway, it is also a branching rule, and the number of branches is not
constant but depends on the level of embedding of the current box. Roughly
speaking, it corresponds to the number of different points in attempted lin-
ear model which are “after” (in case of πF ) or “before” (in case of πP ) the
current state; so, in case there are none, it is an ordinary, non-branching
(πiE). We will not specify the general rule but, for the sake of illustration,
display in Kashima’s format a rule of πF -elimination for weak connectedness
in a special situation. Let the model described in the premise contain two

2Note that we do not apply superscripts with “{” in monomodal case.
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points w1 and w2, R-accessible from the point w, where the πF -formula we
are dealing with is satisfied. The rule looks like this:

(πFE3
K) X[Fϕ {F Γ {F Δ }}]

S1 | S2 | S3 | S4 | S5

where: S1 = X[{F ϕ {F Γ {F Δ }}}];
S2 = X[{F ϕ,Γ {F Δ }}];
S3 = X[{F Γ {F ϕ {F Δ }}}];
S4 = X[{F Γ {F ϕ,Δ }}];
S5 = X[{F Γ {F Δ {F ϕ }}}].

Thus, S1 corresponds to the situation, where a new state w0 was intro-
duced such that Rww0 and Rw0w1, S2 – w0 = w1, S3 – Rw1w0 and Rw0w2,
e.t.c.

Rescher and Urquhart do not present rules for monomodal linear logics
and for strong connectedness in bimodal context, but their approach may
be easily modified. For example, a suitable rule for S4.3 with “three-points-
after” model represented in the premise, looks like this:

(♦E3
K) X[♦ϕ {Γ{Δ{Σ}}}]

S1 | S2 | S3 | S4

where: S1 = X[{ ϕ { Γ { Δ { Σ }}}}];
S2 = X[{ Γ { ϕ { Δ { Σ }}}}];
S3 = X[{ Γ { Δ { ϕ {Σ }}}}];
S4 = X[{ Γ { Δ { Σ { ϕ }}}}]

It is worth saying that in Rescher/Urquhart’s system one may separate
F-linearity from P-linearity. For example, if we take an ordinary elimination
rule for πF , and the linear variant for πP , we will obtain a TS adequate for
the logic of tree-like models (linear past, but several possible future-paths).

Rules with Fixed Number of Branches

Strongly labelled TS system of Catach [64], implemented as TABLEAUX,
contains a rule for weak connectedness (which may be easily changed to
cover connectedness). It is also a branching π-rule but, in contrast to both
approaches already described, it generates a constant number of branches.
In Hintikka style TS but with strong labels and relational formulae included
(cf. Section 8.2.2) it may be stated:
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(♦EL) Γ, xRy, x : ♦ϕ
Γ, xRy, xRz, zRy, z : ϕ | Γ, xRy, y : ϕ | Γ, xRy, y : ♦ϕ

where Γ contains both labelled and relational formulae.

In Kashima’s style one may display it as follows:

(♦EL
K) X[♦ϕ {Γ . . .}]

X[{ ϕ { Γ . . .}] | X[{ Γ, ϕ . . .}] | X[{ Γ, ♦ϕ . . .}]

where: “. . .” means that some other sets of formulae in braces may appear
to the right of Γ.

One may note a strong similarity with the solution applied in Rescher’s
system. Again, we consider only one π-formula at a time, and in case at
least one state w1 in attempted model is R-accessible to a state w where
♦ϕ holds, we apply the rule. If there are no such points, we apply a stan-
dard non-branching (πiE). The difference between Catach’s and Rescher’s
approach is that in the former we explicitly display only cases Rw0w1 (left-
most branch) and w0 = w1 (middle branch). In the rightmost branch ♦ϕ
is simply propagated to w1 for later use, whereas in Rescher’s approach all
possible cases are generated immediately.

In Catach’s approach the fixed number of branches is due to the fact
that at each stage only two different worlds w0 and w1 need to be con-
fronted, exactly as in the condition for weak connectedness. Even more
direct realization of this condition is involved in several nonstandard SC’s
of Wansing, Indrzejczak and Negri. All of them are nonstandard but differ
in many ways, yet suitable rules are based on the same idea.

Wansing [280] obtains the formalization of linear temporal logics on the
ground of display calculus with the help of two structural rules, for linear
future and past respectively:

(DLF ) X ⇒ Y | •X ⇒ Y | 
 • 
X ⇒ Y
• 
 • 
 X ⇒ Y

(DLP ) X ⇒ Y | •X ⇒ Y | 
 • 
X ⇒ Y

 • 
 •X ⇒ Y

An addition of these rules to display calculus for Kt4 yields a formaliza-
tion of Kt4.3. One may use only one of them obtaining a system with only
past- or future-linearity. It is also easy to get an effect of connectedness by
deleting the leftmost premise. We do not attempt to explain the meaning
of these rules since it presupposes some presentation of display calculus in
general – for this one should consult e.g. [280]. Anyway, Wansing’s rules
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may be simulated in Kashima’s system; the counterpart of (DLF ) looks like
that:

(DLFK) X[{FΓ}{FΔ}]
X[{FΓ,Δ}] | X[{FΓ{FΔ}}] | X[{FΔ{FΓ}}]

In multiple sequent calculus (cf. Section 8.2.1) linearity is obtained in a
similar way via structural rule:

(MLF ) Γ < 0, 0 >⇒ Δ | Γ < 0, 1 >⇒ Δ | Γ < 1, 0 >⇒ Δ
Γ < 1, 1 >⇒ Δ

If we recall the interpretation of indexed sequents given in Section 8.2.1
it would be evident that indices of three premises correspond to the three
disjuncts in the succedent of the condition for weak connectedness. So
despite totally different apparatus it represents exactly the same approach
which is involved in Wansing’s system. But there is one difference; the
machinery of weakly labelled multisequents is not as expressive as that of
display logic, in consequence only future-linearity is representable in MSC.

Recently, Negri [194] has proposed a strongly labelled SC for monomodal
logics, where frame conditions falling under the schema of universal or ge-
ometric implication (cf. Section 1.1.5 for definitions) are covered by the
rules of uniform character. Since (weak) connectedness is an example of a
universal implication it is also dealt with in this frame. Roughly speaking,
the general schema of SC rule is:

(R-UI) ψ1, ϕ1, ..., ϕk,Γ ⇒ Δ |, ..., | ψn, ϕ1, ..., ϕk,Γ ⇒ Δ
ϕ1, ..., ϕk, ,Γ ⇒ Δ

for each universal implication of the form ∀x1...xi(ϕ1 ∧ ... ∧ ϕk → ψ1 ∨
... ∨ ψn). The particular instance for weak connectedness is the following:

y = z, xRy, xRz,Γ ⇒ Δ | yRz, xRy, xRz,Γ ⇒ Δ | zRy, xRy, xRz,Γ ⇒ Δ
xRy, xRz,Γ ⇒ Δ

Once again, it is obvious that premises correspond to disjuncts of the
succedent, whereas in the conclusion, the antecedent of weak connectedness
condition is stated.

Also Castellini and Smaill [63] provided a general method for introducing
suitable rules in their strongly labelled SC. Applying their procedure we
obtain the following rule for weak connectedness:

(CSL) Γ ⇒ Δ, xRy | Γ ⇒ Δ, xRz | y = z,Γ ⇒ Δ | yRz,Γ ⇒ Δ | zRy,Γ ⇒ Δ
Γ ⇒ Δ
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Note that this rule, although of different shape, is also modeled directly
on suitable frame condition which may be equivalently stated:

∀xyz(¬Rxy ∨ ¬Rxz ∨Ryz ∨Rzy ∨ y = z) (9.1)

Such a formula corresponds directly to a branching rule with 5 premises.
Although we have constantly used Kashima’s format for a uniform rep-

resentation of different approaches to formalization of linearity, we haven’t
yet discussed his own solution from [161]. His rules for linearity have also a
constant number of branches. In order to obtain a formalization for Kt4.3
Kashima introduces the following rule:

(TrCo) X[GΓ, HΔ,Θ] GΛ, HΠ,Σ
X[Π, HΠ] Γ, GΓ | X[Λ, GΛ] Δ, HΔ | X[Σ] Θ

Clearly, it works for a variant with (turn) (cf. a Section 7.5.3), since
GΛ, HΠ,Σ in the premise are not in braces. Because (turn) is correct only
in temporal logics (or monomodal symmetric) this solution is applicable
only for temporal linear logics. But the situation is not the same as in ND
system from Section 7.1.5; we may in this formalization define a suitable
rule also for monomodal linear logic. For this we must admit rules, where
analogical transfer of sets of formulae is allowed on arbitrary level of nesting
in a K-sequent. Such a rule for S4.3 may have the following form:

(S4.3K) X[{Γ,�Δ}, ..., {Θ,�Λ}]
X[{Γ,�Δ,�Λ}, ..., {Θ,�Λ}] | X[{Γ,�Δ}, ..., {Θ,�Λ,�Δ}]

Nonbranching Rules

We know of four formalizations of linear logics, where suitable rules are not
branching: two ND systems of Indrzejczak, standard [140] and labelled one
[151], and two TS’s: one due to Marx, Mikulas and Reynolds [183], and
the second due to Baldoni [18]. Except labelled ND, remaining ones were
already introduced, so we only briefly recall the basics. Labelled ND will
be presented in a greater detail in the rest of the Chapter.

A standard ND system for temporal logics, where the effect of temporal
axioms LF and LP is simulated by reiteration rule, was already presented
in Section 7.1.5. Here we only remark that it is rather not well suited for
proof search in an analytic way, although actual proof construction is quite
easy in many cases.
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Particularly simple schemata of rules covering LF and LP are obtained
in Baldoni’s strongly labelled TS by his general recipe for generating rules
from Ga,b,c,d axioms. Since both temporal axioms are instances of axioms
for grammar logics of the form [b]ϕ→ [c]ϕ, suitable rules have particularly
simple form:

(BLF ) xRF ;P y / xRP∪ε∪F y and (BLP ) xRP ;F y / xRP∪ε∪F y

Clearly, this is possible due to the presence of complex modalities and
later leads to branching when we apply the rule for breaking unions of
relations. For instance, when applying a suitable rule to xRP∪ε∪F y we get
three branches for xRP y, xRεy and xRF y.

An interesting solution is examined in weakly labelled TS of Marx, Miku-
las and Reynolds, where tableaux are triples of sets of formulae. We have
already presented this system together with the characteristic π-rules for
linearity. So for the time being we recall this solution in the Kashima’s
format:

(3FEK) X[ Γ, GΔ, Fϕ {FΛ, HΣ,¬Fϕ,¬ϕ}]
X[ Γ, GΔ, Fϕ {F GΔ,Δ, ϕ,HΣ,Σ {F Λ, HΣ,¬Fϕ,¬ϕ}}]

(3PEK) X[{P Γ, GΔ,¬Pϕ,¬ϕ } Λ, HΣ, Pϕ]
X[{P {P Γ, GΔ,¬Pϕ,¬ϕ } GΔ,Δ, ϕ,HΣ,Σ } Λ, HΣ, Pϕ]

We will discuss the intended meaning of these rules in the next subsection.

9.1.2 A Comparison of System’s Properties and Strategies
of Linearization

Before we go on with our preferred solution of linearity representation
we summarize some features and compare strategies involved in other ap-
proaches. It helps to explain the rationale behind the rules presented in the
next sections and to show possible advantages of our approach.

Modularity

In many systems, including standard ones, linearity is dealt with via π-rules.
It is rather not in harmony with the usual methodology of tableau systems
where, there is only one basic rule for π-formulae and all strengthenings are
obtained through addition (or modification) of rules for ν-formulae. The
consequence of getting linearity by π-rules is that in some systems we have
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no modularity. For example, in standard Zeman/Shimura/Goré approach
we have not a system for, say, S4 with some special rule(s) for linearity but
a system where a complex rule provides transitivity, connectedness (and
sometimes even more) in one shoot. Failed proof-search in such a system
immediately generates linear models which may be unpleasant in automated
deduction. For example, we cannot use a procedure defined for, e.g. S4,
and add some new elements, but we must define a specific procedure from
scratch. Also, if we find a proof of a thesis by a procedure defined for such
a system we may be not able to check if it is a thesis of S4.3 or of some
sublogic. The same remark applies to Rescher and Urquhart’s system.

In the systems of Catach, or of Marx, Mikulas, Reynolds, a partial
separation of frame properties is possible but at the cost of having two π-
elimination rules in one system. In both cases during a proof search we
attempt to build linear models from the beginning.

Only systems of more complex character, like e.g. display calculus of
Wansing [281], strongly labelled system of Negri [194], or multiple-sequent
calculus of Indrzejczak [146], have special structural rules for linearity. So
they provide not only modularity of the system but also satisfy Dos̆en’s
condition that every extension of the basic system should be obtained by
rules not exhibiting logical constants.

In Kashima’s calculus linearity is dealt with by complex rules of rather
mixed character. They are not structural and only partially modular; F-
linearity cannot be separated from P-linearity for original rules. But we
have shown that this limitation may be overcome by providing a variant
rule for monomodal linearity.

Branching

It is striking that most of the rules devised to deal with linearity introduce
some kind of branching into the proof search. Moreover, often the number
of possible branches is not fixed but depends on some factor. This is the
case of standard tableau systems of Zeman, Goré and the sequent system of
Shimura, as well as semantically based TS of Rescher and Urquhart. There
are systems having rules with a fixed number of branches but this is pos-
sible due to the rather complex character of the whole system. This group
includes: nested sequent system of Kashima, display calculus of Wansing
and some labelled systems like: strongly labelled TS of Catach and Baldoni,
strongly labelled sequent systems of Castellini and Smaill, and that of Negri,
and weakly labelled multiple sequent calculus of Indrzejczak.
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Basically, there are three strategies involved in the application of branch-
ing rules. In systems, where the number of branches generated by suitable
rule is not fixed, it generally depends on the number of unused π-formulae
currently present on extended branch. But this dependence is realized in
different ways; we must distinguish between the strategy of Zeman, Shimura
and Goré, and the strategy of Rescher and Urquhart. The former is a strat-
egy of systematic decreasing of the number of branches, whereas the latter
is a strategy of systematic increasing of their number. However, in both
approaches we realize the strategy of generating at the same time all linear
models admissible at the current stage. So, from this point of view we may
describe them as global strategies.

In the strategy of Zeman, Shimura and Goré, in case of S4.3, if we have
at some stage n unused π-formulae we generate n new branches, one for each
π-formula. We also rewrite in each branch the remaining n− 1 π-formulae
as unused, hence, potentially, any branch produces n − 1 new branches
and so on, until we get n! branches, where each one represents a possible
linear sequence of n worlds generated by these n π-formulae. Obviously,
the number of branches may increase considerably, as any of these original
π-formulae may, by saturation, add k new π-formulae. The case of Goré’s
and Shimura’s rule for weak connectedness ia even more complex, since
from n π-formulae in the premise it produces 2n−1 branches. Generally, in
this approach we generate immediately all linear models admissible at some
stage, by using all π-formulae at once.

The tableau system of Rescher and Urquhart follows slightly different
variant of this strategy: we apply a π-rule for only one formula at a time
but we immediately put a new state in every possible place in a sequence
of already existing states. For example, let the branch represent a model
with n different states in a sequence following a state t where some un-
used πF holds. Then, if we deal with this πF , we must create n + 1 new
branches for each open branch containing t with πF . Every new branch
corresponds to a new possible chain in the following way. Before the appli-
cation of the rule we had a chain 〈..., t, t1, ..., tn〉, and after we have n + 1
new sequences: 〈..., t, t0, t1, ..., tn〉, 〈..., t, t1, t0, ..., tn〉, ...., 〈..., t, t1, ..., tn, t0〉,
where t0 is a new state generated by the activation of πF -formula. So, in
this strategy the number of new branches does not depend on the number
of unused π-formulae but on the number of those that were already used to
create new states in attempted models of open branches. Anyway, both Ze-
man/Goré/Shimura and Rescher/Urquhart’s strategy eventually gives the
same growth of branches, corresponding to all permutations of states; the
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difference is that in Rescher, Urquhart’s strategy we produce n! in the re-
verse order.

In fact, the original Rescher, Urquhart’s rule is even more complicated,
because it is devised for temporal, irreflexive systems, hence the number of
new branches is 2n+ 13 forced by weak connectedness but in case of S4.3,
due to strong connectedness, we can simplify the matters. Again, the overall
computational effect of either Rescher and Urquhart, or of Goré’s strategy
is the same.

So, both strategies described above are global in the sense of engagement
of all π-formulae (or states in a model) during the application of discussed
rules. The remaining solutions are based on the local strategy: a fixed
number of branches generated by suitable rules is due to the fact that at
each stage only two different states in a model need to be confronted, exactly
as in the condition for (weak) connectedness. In details there are also some
differences. Catach’s rule, as we already remarked, follows quite closely
the strategy of Rescher and Urquhart, only the work is partitioned. While
Rescher’s rule deals with all states in a sequence 〈..., t, t1, ..., tn〉 at once (see
above), Catach’s rule produces only two alternative models with new state
t0 (between t and t1, and with t0 = t1), whereas in the third branch we
only push πi from t to t1. Anyway, Catach’s rule while working locally still
obtains a global effect of building only linear models on all open branches,
as we noted above.

Only the rules of strongly labelled SC’s, as well as those of Wansing,
Kashima or Indrzejczak are local indeed, because they enable a full sepa-
ration of the stage of building a model (an introduction of new states by
π-rules) and the linearization stage (by suitable rules).

Although the rules with fixed number of generated branches may look
better, it does not seem that in these systems we generally obtain proof
trees with smaller number of branches (we think here of the number of
branches implied by the number of π-formulae creating new states). In the
worst case we have the same result; n! branches from n π-formulae in case
of strong connectedness. But in practice they seem to work better; one
may often construct much simpler proofs for many theses than in Goré or
Rescher/Urquhart system.

Finally, let us take a look at nonbranching tableau system of Marx,
Mikulas and Reynolds. In fact, this system follows almost the same model-
seeking strategy as that of Rescher and Urquhart. It also deals with only

3An additional effect of identifying a new state with every one already present.
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one π-formula at a time but instead of generating all possible sequences of
states, it rather eliminates those that are impossible, putting the new state
in a suitable place (no immediate contradiction). So this rule is based on
the following statement of weak connectedness:

∀xyz(Rxy ∧Rxz ∧ ¬Ryz ∧ y �= z → Rzy) (9.2)

But it works due to the prior use of an analytic cut in already existing
states. The procedure of proof search defined for completeness proof leads
not only to downward saturation but also to relative maximalization of sets
of formulae corresponding to states of a model. This way, a nonbranching
rule for linearity presupposes an earlier introduction of many branches by
cut, and in the worst case does not offer a better performance.

Needless to say that from the computational standpoint nonbranching
rules are more welcome. We will illustrate this point in the next section.
Finally, it should be noted that also transfer of these rules to ND system may
encounter some difficulties. Some of the branching rules may be simulated
in Gentzen’s format ND with strong labels. For example, Negri’s rule may
be added to Basin/Matthews/Vigano’s system in the form:

[yRz] [y = z] [zRy]
...

...
...

Γ, xRy, xRz ϕ ϕ ϕ

ϕ

But we are interested in systems in Jaśkowski’s format, where such kind
of an extension is not natural in realization. So we should rather follow the
strategy of Marx/Mikulas/Reynolds.

Linearity and Labels

The last remark concerns labels and linearity; in particular it is interest-
ing to see how different strategies for obtaining linearity interact with the
application of labels.

As for the strongly labelled systems the relationship is obvious. Existing
systems show that linearity may be realized directly either by the represen-
tation of a condition of (weak) connectedness (Negri’s rule) or its variant
(9.1) ((CSL) of Castellini and Smaill). In fact, the form (9.2) may be also
easily expressed with the help of the rule:

(SLL) zRy, xRy, xRz,Γ ⇒ Δ, yRz, y = z
xRy, xRz,Γ ⇒ Δ, yRz, y = z
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It is also possible to define suitable rules which realize in the strongly
labelled setting all other previously discussed approaches. But it does make
sense only if we need a tool for comparison of how they work, because we
have already noticed that modular and structural rules with fixed branching
factor are theoretically and practically superior. Note also, that if we want
to introduce suitable rules to strongly labelled tableau or ND systems, in
many cases negated r-formulae must be used, which is not always admitted
in the basic formalization. It is already the case of (CSL) and (SLL),
in contrast to Negri’s rule which may be expressed in ND with no use of
negation.

We have also presented weakly labelled systems for logics of linear frames
(i.e. MSC), but except [149, 151], which will be introduced in the next sec-
tion, there is no labelled system in the sense of Fitting (medium labelling)
that would offer any treatment. Neither Massacci, nor Goré proposed any
rules for linear logics. It may cause the impression that linearity is appar-
ently not easily realizable with the help of some simple labelled-rules, and
virtually needs some devices for rewriting labels. Recall that such a label is
not only a name of a state but also encodes its localization in the attempted
model. So in order to put, say σ.i and σ.j in a sequence, we must either
rewrite one of them, or introduce some additional metalevel information
concerning their accessibility.

In fact, it would be necessary if we followed the solutions of Rescher and
Urquhart or Marx, Mikulas, Reynolds (where, in fact, labels are rewritten
when π-rule is applied), or try to simulate the rules of Wansing or Indrze-
jczak. In all these cases, if more than one new world is being created,
suitable rules simply list all the possibilities for ordering states. A direct
realization of such a strategy in a system with medium labelling would con-
sist in rewriting some labels already present on the branch in order to show
that the new label denotes the world that goes before or between them in
a sequence. But not all approaches need so strong adjustments which, in
fact, change medium labelling into a kind of strong labelling.

For example, the strategy represented in Zeman/Goré/Shimura systems
is in fact not difficult to express in a labelled system with no need for
rewriting labels. For simplicity, we illustrate such an extension for S4.3.
We may define the following labelled rule:
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B
σ : πi1

··
·
σ : πin

����
����

σ1 : π1

σ1 : πi2

· · · · · ·

· · · · · ·

σ1 : πn
σ1 : πi1

··
·

··
·

σ1 : πin σ1 : πin−1

Obviously, by using such a rule we are linked to a tableau system because
in ND (particularly in Jaśkowski’s format) we have no natural means to ex-
press such branching. Although we can obtain also labelled counterparts of
Goré’s rule for K4.3 it is not obvious how to find such rules for linear tem-
poral logics with two interplaying modalities. As we have already noticed
we also lose modularity. On the other hand, the spirit of Fitting’s system is
saved, where the extension of a label corresponds exactly to the accessibility
relation. There is also no need for cut; we could prove completeness of such
a system by Fitting’s method, where each set of formulae with the same
label must be downward saturated only. By the way, we could also simplify
the shape of labels in such a system; similarly as in case of simplified TS
for S5 we may use just natural numbers as labels with accessibility relation
expressed by < or ≤ on them.

In our LND system described below we have followed a slightly different
route, where the effect of linearity is obtained with the help of nonbranching
ν-rules. They are based on the form (9.2) of condition of (weak) connected-
ness, similarly as π-rules of Marx, Mikulas and Reynolds. Consequently, our
approach is close to the strategy realized in their tableau system. Instead
of considering all possibilities for locating a new point, we simply check
if the set of formulae present in some accessible point does not preclude
the possibility of transfer for ν-formulae. Contrary to the Marx, Mikulas,
Reynolds’ realization of this strategy, in our system this test is not con-
nected with the creation of a new point (that is with π-rule) but is being
done independently, on already existing states which are not yet ordered by
label shape. Since our system realizes the same strategy as [183], we also
need cut, but – as we will show – an analytic form is sufficient. In our ND
system such applications of cut are of course covered by [RED]. Proposed
rules may be attached also to labelled tableau systems but in this case some
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explicit form of (analytic) cut is also necessary. Also the form of our rules is
more natural in ND setting, because they are many-premise rules. In fact,
the first version of the system for S4.3 from [149] was based on labelled
KE-system with analytic cut. The extension to some linear temporal logics
was proposed in [151], this time with ND as a basis of formalization.

9.2 LND-System for S4.3

Because the idea of proposed formalization and rationale behind the rules
are easier to expose on simple example, we start with a case study of the
system for S4.3.

9.2.1 Characteristic Rule and Its Correctness

In order to obtain LND system for S4.3, we need to add only one rule to
LND system for S4:

(ν3) σ : νi1, τ : −ν1, τ : νi2 / σ : νi2

It is a kind of conditional ν-rule, because the transfer of νi2 is possible
if some conditions stated in the first two premises are satisfied. Intuitively,
these premises exclude the situation that the value of τ is accessible from σ
which, by strong connectedness, leads to recognition that the opposite holds
and justifies the operation performed on the third premise. In what follows
such rules for simplicity will be called 3-rules.

Some examples may help to understand what kind of deductive steps
may be obtained by (ν3). Our rule allows us to make the following infer-
ences:

from 1.1.2:�p, 1.4:¬p and 1.4:¬♦q we infer 1.1.2:¬♦q

(where: σ : νi1 := 1.1.2:�p, τ : −ν1 := 1.4:¬p, τ : νi2 := 1.4:¬♦q, and σ : νi2
:= 1.1.2:¬♦q)

from 1.2:¬♦p, 1.1.5.2:p and 1.1.5.2:�q we infer 1.2:�q

(where: σ : νi1 := 1.2:¬♦p, τ : −ν1 := 1.1.5.2:p, τ : νi2 := 1.1.5.2:�q, and
σ : νi2 := 1.2:�q)

Let us note that the construction and the length of considered labels
have no influence on the correctness of performed inferences. σ and τ in the
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schema of (ν3) are completely arbitrary. This feature, along with the mul-
tiplication of premises, makes 3-rules somewhat different than well known
tableau rules. Ordinary rules for labelled systems have rather local charac-
ter, they extend the label or jump to another one, but it is an operation on
the chosen formula – we do not need to explore the whole branch in order
to perform a rule. Already our rules for monotonic and congruent logics
slightly departed from this schema because of having two premises. Our
rules for linearity are even more nonstandard. They allow us to compare
any pair of different labels and make a jump after some preliminary reso-
lution step on formulae with these labels. Thus, there are two operations
involved, made on two different formulae and two different labels at the
same time. It makes the structure of labels inessential for these rules, and
it is one more reason for connecting them rather with LND system than with
tableaux; in case of most ND inference rules, the premises are searched for
in the whole derivation before we can add conclusion(s). Note, that in the
system of [149] for S4.3 this arbitrariness of involved labels was tempered.
The characteristic rule has side condition:

(ν3′) σ : νi1, τ : −ν1, τ : νi2 / σ : νi2, where | σ | >1 and | τ | >1

This side condition was responsible for LAB(normality) with respect to
strongly connected models. But the rule may be relaxed with no harm since
S4.3 is also adequate with respect to the class of frames with (nonstrict)
linear order (cf. [112]). So the proof of soundness requires only demonstra-
tion of LAB(normality) of the new rule with respect to models satisfying
the condition of dichotomy. For the sake of illustration we will prove axiom
3 and a thesis 3′ which is sometimes used in alternative axiomatizations of
S4.3 (cf. [60]).

1 SHØW: 1 : �(�p→ q) ∨ �(�q → p) [6, LCOND]
2 1 : ¬�(�p→ q) ass.
3 1.1 : ¬(�p→ q) (2, LπE)
4 1.1 : �p (3, LαE)
5 1.1 : ¬q (3, LαE)
6 SHØW: 1 : �(�q → p) [8, LNEC]
7 1.2 : � ass.
8 SHØW: 1.2 : �q → p [11, LCOND]
9 1.2 : �q ass.
10 1.2 : �p (9, 5, 4, ν3)
11 1.2 : p (10, LT )
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1 SHØW: 1 : ♦p ∧ ♦q → ♦(♦p ∧ q) ∨ ♦(p ∧ ♦q) [5, LCOND]
2 1 : ♦p ∧ ♦q ass.
3 1 : ♦p (2, LαE)
4 1 : ♦q (2, LαE)
5 SHØW: 1 : ♦(♦p ∧ q) ∨ ♦(p ∧ ♦q) [17, LRED]
6 1 : ¬(♦(♦p ∧ q) ∨ ♦(p ∧ ♦q)) ass.
7 1 : ¬♦(♦p ∧ q) (6, LαE)
8 1 : ¬♦(p ∧ ♦q) (6, LαE)
9 1.1 : p (3, LπE)
10 1.1 : ¬(p ∧ ♦q) (8, LνE)
11 1.1 : ¬♦q (9, 10, LβE)
12 1.2 : q (4, LπE)
13 1.2 : ¬(♦p ∧ q) (7, LνE)
14 1.2 : ¬♦p (12, 13, LβE)
15 1.1 : ¬♦p (11, 12, 14, ν3)
16 1.1 : ¬p (15, LT )
17 ⊥ (9, 16, L⊥I)

We will show that (ν3) is (LAB)normal in models satisfying dichotomy.

Lemma 9.1 (ν3) is (LAB)normal in S4.3

Proof Let 〈W,R, V 〉 be any S4.3-model, where U(D) is satisfied under
interpretation �: LAB(U(D)) −→ W such that �(σ)R�(τ), if σ=τ or τ is
an extension of σ. Assume that premises of (ν3) are satisfied under �, so
�(σ) � νi1, �(τ) � −ν1 and �(τ) � νi2; also �(τ) � �iν

i
2 holds by transitivity.

By assumption �(σ)R�(τ) or �(τ)R�(σ). If the first holds, then �(τ) � ν1

and we have a contradiction. So the second holds, hence �(σ) � νi2, and the
conclusion of (ν3) is satisfied either.

It is enough to prove soundness of our system, hence this lemma, the
completeness of both LND-S4 and of axiomatic formalization of S4.3, and
the first of the proofs above, guarantee together that our LND-S4.3 is ad-
equate. So we simply state:

Theorem 9.1 (Adequacy of LND-S4.3) |=S4.3 ϕ iff �LND−S4.3 ϕ

In fact, we can prove completeness of an analytic version of this system
as well, but first we introduce the variants for other linear logics. For the
time being we make some comparison with other systems to show that using
nonbranching rules sometimes may save a lot of labor.
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9.2.2 Efficiency

The following example can make it clear that in practice our rules often allow
us to produce much shorter proofs than the branching ones. Let ϕ denote the
following thesis of S4.3: ♦(�p∧¬q)∧♦(�q∧¬r) → �(�r → s)∨�(�s→ p)

1 SHØW: 1 : ϕ [25, LRED]
2 1 : ¬ϕ ass.
3 1 : ♦(�p ∧ ¬q) ∧ ♦(�q ∧ ¬r) (2, LαE)
4 1 : ¬(�(�r → s) ∨ �(�s→ p)) (2, LαE)
5 1 : ♦(�p ∧ ¬q) (3, LαE)
6 1 : ♦(�q ∧ ¬r) (3, LαE)
7 1 : ¬�(�r → s) (4, LαE)
8 1 : ¬�(�s→ p) (4, LαE)
9 1.1 : �p ∧ ¬q (5, LπE)
10 1.1 : �p (9, LαE)
11 1.1 : ¬q (9, LαE)
12 1.2 : �q ∧ ¬r (6, LπE)
13 1.2 : �q (12, LαE)
14 1.2 : ¬r (12, LαE)
15 1.3 : ¬(�r → s) (7, LπE)
16 1.3 : �r (15, LαE)
17 1.3 : ¬s (15, LαE)
18 1.4 : ¬(�s→ p) (8, LπE)
19 1.4 : �s (18, LαE)
20 1.4 : ¬p (18, LαE)
21 1.3 : �q (16, 14, 13, ν3)
22 1.3 : �p (21, 11, 10, ν3)
23 1.3 : �s (22, 20, 19, ν3)
24 1.3 : s (23, LT )
25 ⊥ (17, 24, L⊥I)

For easier comparison with tableau proofs we have applied only elimi-
nation rules and indirect proof. Note that there is no use of [LRED] in this
example, except the first. In terms of trees it means that there is only one
branch. The reader is asked to check how the proof of this thesis proceeds in
Goré’s system – we can assure you that no clever strategy can save us from
creating at least 20 branches. The same applies to Rescher and Urquhart’s
system and to others aforementioned, including Marx, Mikulas, Reynolds’
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system where, regardless of the nonbranching rule for linearity, we have to
use cut quite often.

In the example, after preliminary steps we have 4 π-formulae but one
can easily define similar examples with arbitrary n π-formulae, where for
each i < n πi = �pi ∧ ¬pi+1 and πn = �pn ∧ ¬p1. The addition of more
π-formulae only slightly (i.e. linearly) increases the length of a proof in
our system, but leads to exponential growth of the number of branches in
proof-trees from other formalizations. For example, if n = 5, then our proof
will be only 5 lines longer but the smallest tree in Goré’s system counts 70
branches. Taking K4.3 as a point of reference (see the rules in the next
section) leads to even more disastrous effects.

This is not the only class of theses for which we can provide similar
analysis; the careful reader may try to prove in LND-S4.3 and in Goré’s
system a thesis ♦�p∧♦�(p→ q) → ♦�q (expected results: one application
of [LRED] = two branches in our system versus 12 branches in Goré’s
system, provided we use β-rules only when strictly necessary).

The source of the problem lies in the very construction of the branching
rules. We briefly describe it, taking as an example the rule of Goré for S4.3.
Contrary to ordinary π-rules for non-linear modal logics this one makes
the calculus confluent; we never cancel any other π-formulae – they are
simply pushed forward. It is theoretically satisfying but may be annoying
in practice. If, say in K, we test π-formulae one by one, we can stop if
we find the first subtree leading to ⊥ on each branch, and delete other π-
formulae by weakening. Thus we may obtain a short proof, even if it was
preceded by a tedious search. But in case of S4.3 we are processing all
current π-formulae at once. There is no need for backtracking, but also no
chance for shortcuts. Our nonbranching rules may be seen just as a kind of
formalized shortcuts in proof construction.

So, from the practical point of view, we can construct shorter proofs by
our rules quite often, the question is, can we find them quickly? In the next
Chapter we will show, after the introduction of the improved proof-search
procedure, that in the worst case our system behaves at least not worse
than other systems we have discussed.

It seems also that nonbranching rules of this sort are more general than
branching rules because they may be used not only in ND but also with
other types of labelled systems. In fact, even some unlabelled systems may
simulate such rules. For example, we may obtain Kashima’s format TS for
S4.3 with the help of the following rule.
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(K-3) X[{Γ,�ϕ}, {¬ϕ,Δ}]
X[{{Γ,�ϕ}¬ϕ,Δ}]

This rule works in Kashima’s system exactly as (ν3) on the ground of
labelled ND or TS. But one should remember that any system, where lin-
earity is realized with the help of (ν3) or some of its counterpart, needs
(analytic) cut for completeness. It may be shown on simple example. As-
sume that in a derivation we have formulae: 1.1:�p, 1.2:�q and no other
U-formula with these labels. If we want to order these labels we must first
use some cut (i.e. [LRED] in ND) e.g. on formulae 1.2 : p and 1.2:¬p.
The latter gives wanted premise for the application of (ν3) to 1.2:�q; we
infer 1.1:�q and after application of (LT ) we have that 1.1: is accessible
from 1.2:. The former formula yields immediately the opposite connection
between the labels.

9.3 LND for Linear Temporal Logics

LND-system for S4.3 provided a convenient explanation of the general strat-
egy of linearization. We have also illustrated some profits we may earn
thanks to nonbranching rules. What is very important, this solution may
be generalized also for other linear logics, including temporal ones, which
is in contrast to some other approaches which work only for monomodal
logics.

9.3.1 Formalization of Kt4.3

LND-system for Kt4.3 demands an addition of four 3-rules to LND-Kt4:

(3FF ) σ : νF1 , σ : ν1, τ : −ν1, τ : νF2 / σ : ν2, σ : νF2
(3PP ) σ : νP1 , σ : ν1, τ : −ν1, τ : νP2 / σ : ν2, σ : νP2
(3FP ) σ : νF1 , σ : ν1, τ : −ν1, σ : νP2 / τ : ν2, τ : νP2
(3PF ) σ : νP1 , σ : ν1, τ : −ν1, σ : νF2 / τ : ν2, τ : νF2

(3FF ) is a direct generalization of (ν3); it has one more premise (the
second) because we must additionally exclude the possibility that σ and τ
denote the same point. Two conclusions are the consequence of the lack
of reflexivity. (3PP ) is a mirror image of (3FF ), whereas the presence of
(3FP ) and (3PF ) is a result of symmetry of past and future. (3FP ) has
three conditional premises the same as (3FF ); (3PF ) – the same as (3PP ),
only the move of ν-formulae from the last premise has an opposite direction.
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Perhaps the application of these 3-rules should be illustrated again, since
they are the most complicated inference rules in our system. For example:

from 1.2.1[F ] : ¬Fp, 1.2.1[F ] : ¬p, 1.1[P ] : p and 1.1[P ] : Gq we may infer
by (3FF ) both 1.2.1[F ] : q and 1.2.1[F ] : Gq;

from 1.2.1[F ] : ¬Fp, 1.2.1[F ] : ¬p, 1.1[P ] : p and 1.2.1[F ] : ¬Pq we may
infer by (3FP ) both 1.1[P ] : ¬q and 1.1[P ] : ¬Pq. The shape of labels (their
length and the fact that σ is an F -label and τ is a P -label) is incidental as
well as the shape of ν-formulae occurring in our examples.

We illustrate our system in action with two derivations: open and closed.

1 SHOW: 1 : G(Gp→ q) ∨G(Gq → p)
2 1 : ¬(G(Gp→ q) ∨G(Gq → p)) ass.
3 1 : ¬G(Gp→ q) (2, LαE)
4 1 : ¬G(Gq → p) (2, LαE)
5 1.1[F ] : ¬(Gp→ q) (3, LπE)
6 1.2[F ] : ¬(Gq → p) (4, LπE)
7 1.1[F ] : Gp (5, LαE)
8 1.1[F ] : ¬q (5, LαE)
9 1.2[F ] : Gq (6, LαE)
10 1.2[F ] : ¬p (6, LαE)
11 SHØW: 1.1[F ] : ¬p [15, LRED]
12 1.1[F ] : p ass.
13 1.1[F ] : q (7, 12, 10, 9, 3FF )
14 1.1[F ] : Gq (7, 12, 10, 9, 3FF )
15 ⊥ (8, 13, L⊥I)
16 SHØW: 1.2[F ] : ¬q [20, LRED]
17 1.2[F ] : q ass.
18 1.2[F ] : p (9, 17, 8, 7, 3FF )
19 1.2[F ] : Gp (9, 17, 8, 7, 3FF )
20 ⊥ (10, 18, L⊥I)

In this example (which was already proven but in S4.3) there is no
chance to close the overall argument. Two subsidiary derivations are com-
pleted which shows that neither the point denoted by 1.1 is accessible to the
point 1.2, nor is the opposite. But it is still consistent that 1.1=1.2 since in
both points p and q are evaluated in the same way, as false.
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1 SHØW: 1 : PFp→ Fp ∨ p ∨ Pp [3, LCOND]
2 1 : PFp ass.
3 SHØW: 1 : Fp ∨ p ∨ Pp [12, LRED]
4 1 : ¬(Fp ∨ p ∨ Pp) ass.
5 1 : ¬Fp (4, LαE)
6 1 : ¬p (4, LαE)
7 1 : ¬Pp (4, LαE)
8 1.1[P ] : Fp (2, LπE)
9 1.1.1[F ] : p (8, LπE)
10 1.1.1[F ] : ¬p (5, 6, 9, 7, 3FP )
11 1.1.1[F ] : ¬Pp (5, 6, 9, 7, 3FP )
12 ⊥ (9, 10, L⊥I)

Proving LAB(normality) of 3-rules with respect to trichotomic models is
similar as in the case of (ν3) with one small difference; we must use a notion
of interpretation � specified for temporal logics in the Definition 8.7 from
Section 8.5.3. Their correctness is sufficient for completing a soundness
proof. As for completeness it is enough to note that the thesis we have
proved is, on the basis of Kt4, equivalent to L (cf. [60]), so it holds:

Theorem 9.2 (Adequacy of LND-Kt4.3) |=Kt4.3 ϕ iff �LND-Kt4.3 ϕ

9.3.2 Other Linear Logics

The system may be easily modified in several ways to capture other linear
logics as well. We will sketch some possibilities.

We can add more rules to provide formalizations of stronger linear logics.
For example, an addition of labelled versions of (DF ) and/or (DP ) yield
three possible extensions of Kt4.3 with future- or past-seriality, or both,
whereas an addition of (LT ) yields a temporal counterpart of S4.3. In the
latter we may obviously simplify our 3-rules:

(3FF ′) σ : νF1 , τ : −ν1, τ : νF2 / σ : νF2
(3PP ′) σ : νP1 , τ : −ν1, τ : νP2 / σ : νP2
(3FP ′) σ : νF1 , τ : −ν1, σ : νP2 / τ : νP2
(3PF ′) σ : νP1 , τ : −ν1, σ : νF2 / τ : νF2

In these rules we get rid of one conclusion, since it is derivable by (LT );
also one of the premises in 3-rules is superfluous, since in the presence of
reflexivity we must capture only strong connectedness.
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On the other hand, we may provide formalizations of monomodal K4.3
and KD4.3 by taking only (3FF ). All these modifications are straightfor-
ward. It seems that density can be also easily provided syntactically by the
addition of inference rules modeled on suitable axioms. But for this system
in analytic version we are not able to provide a completeness proof. On
the other hand, it is not clear in what way we can obtain a formalization
(analytic or not) of discrete linear order.

However, our system suffers from one serious restriction: it is not possi-
ble to obtain a formalization for bimodal logic where only one modality is
linear. It is not enough to get rid of one pair of 3-rules and keep the other
because they are interrelated. Moreover, in tree-models instead of linearity
we necessarily have a weaker condition of right (or left) weak connectedness.
Neither (3FF ) nor (3PF ) is (LAB)normal in models satisfying this condi-
tion and similarly for (3PP ) and (3FP ) in case of left weak connectedness.
Moreover, in bimodal case we cannot obtain counterparts of our 3-rules
with side condition (analogous to (ν3′)) which are LAB(normal) in weakly
connected frames, because in one label not the one accessibility relation is
involved; we have discussed this point in Remark 8.5.

There is no difficulty in extending our LND-systems for linear logics to
first-order classical or free version; one may just add labelled rules stated
in Section 8.5.4. These extensions are complete, since Garson’s [104] proof
works for all logics which are axiomatized with the help of axioms corre-
sponding to universal implications, and our ND formalizations of several
versions of QML are strong enough to simulate his systems (cf. Chapter 2
in this respect).

9.4 Analytic Version of LND for Linear Logics

LND system for linear logics depicted above is not analytic, but fortunately,
after introduction of suitable restrictions it is still complete. For simplicity,
we consider here a system LAND1 – a labelled version of AND1, as described
in Chapter 4 (cf. also the next Chapter). It is an LND system restricted
only to elimination rules, including rules for elimination of modal/temporal
constants, and to [LRED] as the only proof construction rule. Moreover,
we restrict the applications of [LRED] to analytic ones; only such σ : ψ
may appear as S-line which is a (negated) subformula of the first S-formula.
It is evident that LAND1 is a labelled version of AND1 from Chapter 4.
Thus, for example, LAND1-Kt4.3 is LAND1-Kt4 with additional four 3-
rules. Unfortunately, we cannot show completeness by simulation of suitable
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tableau systems, because there is nothing to be simulated.
Moreover, there are serious differences between our system and labelled

tableaux that force us to resign, in the completeness proof, from the beau-
tiful technique of Fitting, where the machinery of labels plays the main
part and cut is dispensable. In Fitting’s system there is a natural relation
between labels (namely that of being an extension of) that corresponds to
the accessibility relation of the attempted model. This correspondence is
violated by our device of dividing labels into two groups; we have already
underlined that extension of a label is not any more a sign of moving for-
ward (cf. Remark 8.5). Anyway, this is something of minor importance and
we can keeep control over the structure of attempted model if the rules have
single step character. Hence, if we get rid of our four 3-rules we could quite
easily prove completeness for Kt4 or Kt by Fitting’s method without any
need for the cut. It will be done in the next Chapter.

However, the rules for linearity do not fit the picture of tableaux with
medium labelling in an exact way, as we have already mentioned in Sec-
tion 9.2.1. Massacci’s single step rules have strictly local character, they
extend the label or jump to another one, but always it is a direct neigh-
bour (successor or predecessor of a given label). Fitting’s original rules for
transitive logics admit in fact long jumps but it is always bounded by the
structure of a label. Moreover, in both cases, an application of a rule is
an operation on the chosen formula – we do not need to explore the whole
branch, and in this sense they have a local character. On the contrary, our
rules for linearity are different in that they have a global character. To per-
form a rule we must compare any pair of different labels and make a jump
after preliminary resolution step on formulae with these labels. Hence, 3-
rules have two new features: the structure of the labels involved in 3-rules
is inessential for application of these rules, and the premises are searched
for in the whole derivation before we can add conclusion(s).4

At least two features of our completeness proof are the consequences of
this peculiarity of 3-rules. First, they cause that the structure of labels is
not in any obvious correspondence with the final accessibility relation of a
falsifying model. For this reason we will define the accessibility relation for
models not by reference to the label’s structure but in a standard way (as
in Henkin-style constructions) – it is even necessary in monomodal linear
system like S4.3 (see [149]). Second, the use of cut (in LND represented
by applications of [LRED]) is necessary if we want to linearize the states

4The latter feature was in fact present also in our labelled rules for weak logics intro-
duced in Section 8.6.



322 CHAPTER 9. LOGICS OF LINEAR FRAMES

of a model; we have already illustrated this point in Section 9.2. But, as we
shall see, all required applications of cut satisfy subformula property.

Below we will present a completeness proof for LAND1-Kt4.3 which
is adapted (with slight modifications) from Indrzejczak [151]. Yet another
completeness proof for LAND1-S4.35 may be found in [149] but it works
only for this particular logic, whereas a proof stated below is a more general
construction.

In what follows we will be talking about derivations for arbitrary but
fixed nonprovable ϕ. Also, for simplicity, we will identify sets of l-formulae
uniformly labelled, with their labels. Thus we will often write ϕ ∈ σ if σ : ϕ
belongs to a derivation. We will consider only derivations where every label
is a subset of {¬ϕ}.

Definition 9.1 (Relative maximality)

1. σ is consistent iff no formula and its complement belong to σ;

2. σ is saturated in {¬ϕ} iff for any ψ ∈ {¬ϕ} either ψ ∈ σ or −ψ ∈ σ;

3. σ is maximal in {¬ϕ} iff it is consistent and saturated.

Note, that the simple consequence of a saturation is that for any α and β
from {¬ϕ}:

(a) α ∈ σ iff α1 ∈ σ and α2 ∈ σ and
(b) β ∈ σ iff β1 ∈ σ or β2 ∈ σ.

σ is called downward saturated, if only weaker versions (left-to-right impli-
cations) of (a) and (b) are satisfied

We need a suitable counterpart of Lindenbaum lemma.

Lemma 9.2 (Maximalization) Let D be an open derivation for ϕ; if
σ ⊆U(D) is consistent, then there is an open derivation D′ for ϕ such that
σ ⊆U(D′) and σ is maximal in {¬ϕ}

Proof Assume that σ is not maximal, otherwise the lemma holds trivially.
First we apply all static rules to formulae in σ that were not used before.
After this stage σ is not necessarily saturated because there may be some

5Actually, it is performed for labelled KE-system with (ν3′) not for LAND1 but that
is not the point.
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β-formulae not used so far (there were no minor premises for application
of β-rule). If we still have such unused β-formulae, we choose the first
one, introduce lacking minor premise and its complement as an S-line and
indirect assumption respectively, and return to the application of static
rules. It follows from consistency of σ that either new subderivation remains
open or – in case of its closure – U(D) is extended by one of βi in the
outer subderivation. We continue saturation and, if necessary, repeat the
above step with lacking minor premises and their complements for other
unused β-formulae. Since σ is finite we must obtain an extension of D
with σ downward saturated but not necessarily maximal in {¬ϕ}. If there
are some formulae in {¬ϕ} such that neither they nor their complements
belong to σ, we deal with them similarly as with lacking components of
β-formulae, i.e. we introduce a formula and its complement as an S-formula
and assumption, and continue with static rules. Note that it is admissible
in LAND1 because it is a derivation for ϕ, so all considered applications of
[LRED] are analytic. Again, by consistency of σ either new subderivation
remains open or outer derivation is consistently extended. Because {¬ϕ}
is finite, then by repeating this procedure we eventually produce an open
extension of D such that σ ⊆U(D) and is maximal in {¬ϕ}.

Let us define an accessibility relation on maximal labels:

Definition 9.2 (Accessibility and fulfillment)

Let σ and τ be maximal in {¬ϕ}:

1. τ is accessible from σ (or σ � τ) iff

(a) if νF ∈ σ, then νF ∈ τ and ν ∈ τ , and

(b) if νP ∈ τ , then νP ∈ σ and ν ∈ σ.

2. (a) if πF ∈ σ, then πF is fulfilled iff there is some τ such that σ � τ
and π ∈ τ .

(b) if πP ∈ σ, then πP is fulfilled iff there is some τ such that τ � σ
and π ∈ τ .

It is a characteristic feature of this proof that while building a derivation we
build also a graph of accessibility of labels taking care of its linearity. We
start with one-element sequence 〈1〉 and with every application of π-rule we
modify it, either adding a new σ to the beginning, or to the end, or inserting
this label between other elements of a sequence. Formally, we introduce the
notion of a chain of labels.
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Definition 9.3 (Chain)

1. Let C be a denumerable collection of labelled sets, such that each
σ ∈C is maximal in {¬ϕ}: C is a chain in {¬ϕ} iff for any different
labels τ and θ in C, θ is accessible from τ or τ is accessible from θ.

2. A chain C is fulfilled iff each π-formula from every label of C is fulfilled.

Note! “different labels” means labels of different shape, not necessarily
labelling different sets of formulae. Just the contrary, since our proof admits
infinite chains and {¬ϕ} is always finite it may happen that the same set of
formulae may reappear infinitely often but everytime with a different label.

Lemma 9.3 (Model Existence) Let C be a fulfilled chain and let MC =
〈T , <, V 〉 where: T = LAB(C), < = �, V (p) = {σ: p ∈ σ} then:
MC is a Kt4.3-model such that for any σ ∈C and any ψ in {¬ϕ}:

σ � ψ iff ψ ∈ σ,

The proof is standard, by induction on the length of ϕ; transitivity and
linearity of < is secured by the construction of C.

The last lemma suggests the way to achieve completeness; we must build
an open derivation D such that U(D) will be eventually a chain. We will
call a full-derivation for ϕ, any derivation which satisfies the stipulation that
all labels in U(D) must be maximal in {¬ϕ}, before we add the new one
(i.e. before we apply π-rule and transfer rules). By Lemma 9.2. we know
that every consistent label may be maximalised. Every time all labels are
maximal, we pick up the first unfulfilled πF (or πP ) in U(D), apply (LπE)
and then apply (LνE) and (L4) to all ν-formulae in the parent of fresh σ.
By “the first unfulfilled πF (or πP )” we mean the first such a formula from
the top of a derivation – this way every such a formula will be eventually
fulfilled. It means also that before we apply π-rule to some, e.g. σ : πF ,
we first check if there is no τ such that σ � τ and π ∈ τ or πF ∈ τ . In the
former case our π is already fulfilled, in the latter case it is postponed to
later stage. Similarly for every πP . Then we return to maximalization.

Now we prove the key lemma:
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Lemma 9.4 (Chain Extension) Let U(D) in a full derivation D for ϕ be
an unfulfilled n-element chain and let D′ be the result of fulfilment of some
πF (or πP ), then U(D′) is an n+ 1-element chain.

Proof Assume we have finished the k-th stage of our construction and
U(D) yields n-element chain C=σ1, ...σn. Pick up the first unfulfilled π-
formula, for definiteness let our first unfulfilled π-formula be some σi : πF ,
we prove our claim by induction on the number of successors of σi in C.

Basis: If σi is the last item in the chain (i = n), we simply apply (πE)
introducing a new son of σi. Next, by ν-rules and saturation we build a
suitable maximal set. After that we apply (LBνP ) and (LB4νP ) to every
νP in the new label to secure that it is accessible from σi and also from all
its predecessors. This ends the proof for the basis.

To show that our claim holds if σi has k < n successors, assume that
it is satisfied for any i < k successors. Consider all successors of σi; since
our πF is not yet fulfilled, by maximality −π belongs to each one. Again by
maximality either πF or its complement is in the immediate successor of σi.
If the first case holds, then we are done by induction hypothesis; similarly
for further successors. So assume that in all successors of σi we have −πF
(and −π). So we apply (πE) introducing a new label, being an F -child of
σi. By an argument such as was used for a basis, we show that it must be
accessible from σi and from all predecessors of σi. On the other hand, by
(3FF ) and (3FP ) all successors of σi must be accessible to this new label,
since in each case we have required assumptions for the application of these
rules, namely π itself in the fresh successor of σi and −π with −πF which is
a suitable ν-formula, since complement of any π-formula is ν-formula and
vice versa. So, as a result, we obtain n+ 1-element chain C’ where the new
label is inserted between σi and the immediate successor of σi from C.

A similar argument applies to any unfulfilled πP , but this time we make
an induction on the number of predecessors and refer to (3PP ) and (3PF ).

Now we are in a position to prove a completeness of LAND1-Kt4.3.

Theorem 9.3 (Completeness) If |=Kt4.3 ϕ, then LAND1-Kt4.3 � ϕ.

Proof As usual we prove the contrapositive. By assumption no derivation
for ϕ closes, no full derivation in particular. It means that notwithstanding
how often we must close some subderivation and start again the process
of maximalization we eventually must find an open one. First we extend
1.Γ until we get a set maximal in {¬ϕ} and if there are no π-formulae we
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can stop, otherwise we select the first unfulfilled π-formula, apply a suitable
rule and create a new (F - or P -) label 1.1. Alternately applying ν-rules
and maximalization we obtain two-element chain. If it is not fulfilled, then
we follow the procedure for constructing full derivations, building a chain
in {¬ϕ}. Now, this process either terminates or not. In the first case we
have n-element fulfilled chain, in the second our procedure guarantees that
every π-formula must be eventually used, so we get a fulfilled chain in the
omega-step. Either way, by Lemma 9.3. we can extract a falsifying model
for ϕ from the chain.

The proof we have provided is constructive and general enough to be
applied to KtD4.3 and KtT4.3. For monomodal logics K4.3, KD4.3 and
S4.3 it works too, with omission of details concerning the second modality.
Although it involves some procedure for proof search it is not very practical.
The fact that we may run infinite search is not the main problem; we may
easily provide some mechanism for loop-control and obtain a decision pro-
cedure – we will return to these matters in the next Chapter. The problem
is with maximalization of every label; it makes this procedure extremely
inefficient. Every time before we apply (LπE) to enlarge a model, we must
first perform a lot of superfluous inferences. From the standpoint of quick
proof they are unnecessary and they extremely increase the complexity of
a derivation. Moreover, in the context of modal logics, an introduction of
these additional formulae may lead to the creation of additional states in a
model – we will discuss this problem in the next Chapter. In fact, an appli-
cation of 3-rules is in our procedure rather an additional way of obtaining a
closure of subderivation, not a way to enrich a label with new ν-formulae.
It is a result of preliminary maximalization of every label in {¬ϕ}; either
respective labels contain conclusions from applications of 3-rules (so it does
not make sense to apply them) or they contain their complements which
yield ⊥ and closure of current subderivation. In the next Chapter we will
introduce a more efficient procedure based on downward saturation only.

9.5 Extensions and Limitations

Our characteristic 3-rules may be easily adapted to labelled RND setting
in both versions: with local and global labels. Suitable clausal rules for
LLRND are displayed below:
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(LL3) Γ, σ : νi1 ; Δ, τ : −ν1 ; Θ, τ : νi2 / Γ,Δ,Θ, σ : νi2
(LL3′) Γ, σ : νi1 ; Σ, σ : ν1 ; Δ, τ : −ν1 ; Θ, τ : νi2 /

Γ,Σ,Δ,Θ, σ : ν2

(LL3′.4) Γ, σ : νi1 ; Σ, σ : ν1 ; Δ, τ : −ν1 ; Θ, τ : νi2 /
Γ,Σ,Δ,Θ, σ : νi2

(LL3-Te) Γ, σ : νi1 ; Δ, τ : −ν1 ; Θ, σ : νj2 /
Γ,Δ,Θ, τ : νj2, where i �= j ∈ {F, P}

(LL3′-Te) Γ, σ : νi1 ; Σ, σ : ν1 ; Δ, τ : −ν1 ; Θ, σ : νj2 /
Γ,Σ,Δ,Θ, τ : ν2, where i �= j ∈ {F, P}

(LL3′-Te4) Γ, σ : νi1 ; Σ, σ : ν1 ; Δ, τ : −ν1 ; Θ, σ : νj2 /
Γ,Σ,Δ,Θ, τ : νj2, where i �= j ∈ {F, P}.

(LL3) added to LLRND-S4 yields LLRND-S4.3, (LL3′) and (LL3′.4)
added to LLRND-K4 yield LLRND-K4.3. In case of temporal logics Kt4.3
and KtT4.3 we need additionally symmetric variants: (LL3-Te) for the
latter and the remaining two for the former. A demonstration of soundness
is left to the reader; completeness follows from the fact that 3-rules stated
for LND are just special cases of clausal 3-rules.

In GLRND we need the following 3-rules:

(GL3) σ : Γ, νi1 ; τ : −ν1 ; τ : νi2, . . . , ν
i
k / σ : Γ, νi2, . . . , ν

i
k

(GL3′) σ : Γ, νi1 ; σ : Δ, ν1 ; τ : −ν1 ; τ : νi2, . . . , ν
i
k /

σ : Γ,Δ, ν2, . . . , νk
(GL3′.4) σ : Γ, νi1 ; σ : Δ, ν1 ; τ : −ν1 ; τ : νi2, . . . , ν

i
k /

σ : Γ,Δ, νi2, . . . , ν
i
k

(GL3-Te) σ : νi1 ; τ : Γ,−ν1 ; σ : νj2, . . . , ν
j
k /

τ : Γ, νj2, . . . , ν
j
k, where i �= j ∈ {F, P}.

(GL3′-Te) σ : νi1 ; σ : ν1 ; τ : Γ,−ν1 ; σ : νj2, . . . , ν
j
k /

τ : Γ, ν2, . . . , νk, where i �= j ∈ {F, P}.
(GL3′-Te4) σ : νi1 ; σ : ν1 ; τ : Γ,−ν1 ; σ : νj2, . . . , ν

j
k /

τ : Γ, νj2, . . . , ν
j
k, where i �= j ∈ {F, P}.

They are in one-to-one correspondence to 3-rules stated for LLRND so
exactly the same logics may be formalized with their help on the basis of
GLRND. We leave an adequacy proof to the reader as well.

The following example of a proof of the thesis ϕ = ♦p ∧ ♦q → ♦(p ∧
q) ∨ ♦(♦p ∧ q) ∨ ♦(p ∧ ♦q) in LLRND-K4.3 provides an illustration of
application of clausal 3-rules:
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1 SHØW: 1 : ϕ [20, SUB]
2 1 : ¬ϕ ass.
3 1 : ♦p ∧ ♦q (2, LLα)
4 1 : ¬(♦(p ∧ q) ∨ ♦(♦p ∧ q) ∨ ♦(p ∧ ♦q)) (2, LLα)
5 1 : ♦p (3, LLα)
6 1 : ♦q (3, LLα)
7 1 : ¬♦(p ∧ q) (4, LLα)
8 1 : ¬♦(♦p ∧ q) (4, LLα)
9 1 : ¬♦(p ∧ ♦q) (4, LLα)
10 1.1 : p (5, LLπE)
11 1.2 : q (6, LLπE)
12 1.1 : ¬(p ∧ q) (7, LLExp-K)
13 1.1 : ¬(p ∧ ♦q) (9, LLExp-K)
14 1.1 : ¬p, 1.1 : ¬q (12, LLβ)
15 1.1 : ¬p, 1.1 : ¬♦q (13, LLβ)
16 1.2 : ¬(♦p ∧ q) (8, LLExp-K)
17 1.2 : ¬♦p, 1.2 : ¬q (16, LLβ)
18 1.1 : ¬p, 1.2 : ¬q (15, 14, 11, 17, LL3′)
19 1.1 : ¬p (11, 18, Res)
20 ⊥ (10, 19, Res)

One should note that our approach to linear logic may be extended to
other modal logics which are semantically characterized by universal impli-
cations (cf. Section 1.1.5.) We will illustrate the point with two examples:
S4F and S4R. Suitable semantic conditions may be stated as universal
implications:

F ∀xyz(Rxy ∧Rxz → Ryx ∨Rzy)
R ∀xyz(Rxy ∧Rxz → x = z ∨Ryz)

But for our needs the following equivalents are more accurate:

F ′ ∀xyz(Rxy ∧Rxz ∧ ¬Ryx→ Rzy)
F ′′ ∀xyz(Rxy ∧Rxz ∧ ¬Rzy → Ryx)
R′ ∀xyz(Rxy ∧Rxz ∧ x �= z → Ryz)
R′′ ∀xyz(Rxy ∧Rxz ∧ ¬Ryz → x = z)

These conditions may be expressed by the following rules:
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(F ′) στ : νi1, σ : −ν1, σθ : νi2, / στ : νi2
(F ′′) σθ : νi1, στ : −ν1, στ : νi2, / σ : νi2
(R′) σ : ϕ, σθ : −ϕ, στ : νi, / σθ : νi

(1R′′) στ : νi, σθ : −ν, σθ : ϕ / σ : ϕ or
(2R′′) στ : νi, σθ : −ν, σ : ϕ / σθ : ϕ

To obtain LND-S4F we must add to LND-S4 either (F ′) or (F ′′); for
LND-S4R we need one of (R′), (1R′′) or (2R′′). Completeness of nonana-
lytic version follows from the fact that respective axioms are easily provable
with the help of one application of any of the stated rules – we leave it to
the reader.

To establish (LAB)normality of these rules one should note that in all
cases σ corresponds to x, στ to y and σθ to z. Informally, in both rules
corresponding to F the first two premises express that ¬Ryx or ¬Rzy,
whereas in the rules corresponding to R, that x �= z or ¬Ryz. Accessibility
of y and z from x is just encoded in the structure of respective labels. The
rest is just a result of rewriting of ν-formulae (in cases where the succedent
of respective condition is a relational atom) or any formulae (in case of
identity) from one label to another. Soundness follows immediately from
(LAB)normality of these rules.

We hope that both systems may be restricted to an analytic version,
similarly as LND systems for linear logics, but for the time being we are
unable to offer a constructive completeness proof.6 However, it is certain
that in case of analytic formalization of S4R we should use either (R′) or
both (1R′′) and (2R′′). In the latter case symmetry of identity causes that
we need two rules to move all the formulae from one label to the other and
reversely.

Finally, note that we can obtain in this way only a formalization of
monomodal versions of respective logics, since in both cases we must have
resigned from single-step character of rules.

The last remark reffers to subtle questions of applicability of Fitting’s-
like labels to multimodal logics in general (cf. Section 8.3 where some sys-
tems of this sort are mentioned). Baldoni [18] compares medium labelling
with his approach based on strong labelling and shows that the latter is
superior in many respects. It is true that with the help of medium labelling
we cannot provide such a general and extensive approach as is possible by
means of strong labelling. For example, we were able to show that some

6Analytic labelled system for these logics may be found in Leszczyńska [175] but it is
based on the rules of different character.
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specific logics semantically characterized by universal implications are for-
malizable in this way but we cannot provide a general schema of formaliza-
tion for all such logics (as e.g. in [194]), even for monomodal ones. Medium
labelling seems to be strongly sensitive with respect to specific properties of
accesibility relation, whereas strong labelling is rather independent of them
and based on the general architecture of any frame.

In multimodal setting limitations of medium labelling are even more
severe. Baldoni gives an example showing that some multimodal interactive
logics are not formalizable because it may appear that we have a label on a
branch but there is no way to obtain all its sublabels. Consider a multimodal
logic with the axiom [a][b]ϕ → [c]ϕ. In Baldoni’s TS it is formalised by a
rule (BR): xRcy / xRaz; zRby with z being a new label on a branch. We
may easily obtain a tableau proof of [a]p ∧ 〈c〉q → 〈a〉p in his system in the
following way:

1 1 : ¬([a]p ∧ 〈c〉q → 〈a〉p)
2 1 : [a]p ∧ 〈c〉q (1, Lα)
3 1 : ¬〈a〉p (1, Lα)
4 1 : [a]p (2, Lα)
5 1 : 〈c〉q (2, Lα)
6 1Rc2 (5, LπE)
7 2 : q (5, LπE)
8 1Ra3 (6, BR)
9 3Rb2 (6, BR)
10 3 : ¬p (3, 8, LνE)
11 3 : p (4, 8, LνE)
11 ⊥ (10, 11)

In the system based on medium labelling we rather stop with 1.1[c] : q
in line 6. One may think about some rule like, e.g. σ : 〈c〉ϕ / σ : 〈a〉〈b〉ϕ to
overcome a problem. An application of such a rule yields 1 : 〈a〉〈b〉q from
line 5 and then, by application of (LπE), we got 1.1[a] : 〈b〉q which enables
application of (LνE) to lines 3 and 4 and closure of a branch. But such a
solution is rather artificial and nonanalytic.

Still we may generalize the apparatus of Fitting’s labels to other mul-
timodal interactive logics except temporal ones. For instance, in Chapter
5 we have given as an example epistemic logics formalized by means of in-
clusion axioms of the form �iϕ → �jϕ. In models they correspond to the
condition Rj ⊆ Ri. In order to obtain LND for such logics it is sufficient to
strengthen (νE) (and possibly other transfer rules like (4)) for νi, admitting
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for conclusion σ.k : ν not only with respect to every i- but also with respect
to every j-label σ.k.

Such a rule is simple, natural and provide a solution to the second of
Baldoni’s example showing weakness of medium labelling. Consider the
logic with two inclusion axioms: [a]ϕ→ [c]ϕ and [b]ϕ→ [c]ϕ. We can easily
provide a proof of [a]p∧ 〈c〉q → 〈b〉p in TS enriched with additional ν-rules.

1 1 : ¬([a]p ∧ 〈c〉q → 〈b〉p)
2 1 : [a]p ∧ 〈c〉q (1, Lα)
3 1 : ¬〈b〉p (1, Lα)
4 1 : [a]p (2, Lα)
5 1 : 〈c〉q (2, Lα)
6 1.1[c] : q (5, LπE)
7 1.1[c] : ¬p (3, LνE)
8 1.1[c] : p (4, LνE)
9 ⊥ (7, 8)

Lines 7 and 8 are deduced by ν-rule applied just to this label which is
admissible by inclusion of respective accessibility relations.

But to be honest it must be said that our solution deals with just a
specific example and not with general difficulty pointed out by Baldoni,
namely that in medium labelling one has no natural means to identify dif-
ferent labels. The problem is that different R-paths may lead in a model to
the same world. In medium labelling these are represented by different la-
bels, whereas in strong labelling we introduce a unique label for each state,
leaving details concerning the structure of a model to be represented inde-
pendently by relational formulae. These limitations of medium labelling are
serious if one is interested in really uniform and extensive treatment of big
classes of modal logics. To overcome this problem we will introduce hybrid
logics in the last two chapters. But if one needs easy going systems for the
most important modal logics it is still arguable that Fitting’s approach is
better. Hence, before we go on to the most general approach we focus on
the problem of analytic versions of LND.



Chapter 10

Analytic Labelled ND and
Proof Search

LND system from Chapter 8 allows us to construct simple derivations but
is not analytic. We have mentioned in Section 8.5 that one may obtain
complete, universal and analytic version similarly as in Chapter 4; by step-
wise simulation of every tableau with the help of only elimination rules and
analytic applications of cut (i.e. [LRED]). This way we have obtained in
the last Chapter, a labelled version of AND1 called LAND1. Because la-
belled TS’s of Fitting, Massacci or Goré are known to be complete (several
proofs may be found e.g. in [93], [185, 186] or [117]) we have an indirect
completeness proof for LAND1 for many modal logics, including all basic
normal ones. Since mentioned authors do not provide labelled TS’s for e.g.
temporal logics in general, and for linear (monomodal and temporal) logics,
we have dealt with the problem in the last Chapter. We have noted how-
ever, that offered solutions, although theoretically satisfying, are in practice
rather complex.

At present, on the basis of the results from Chapter 4, we develop more
efficient proof search procedures which yield completeness and decidability
of LAND1 for many logics. This will be done in stages because stronger log-
ics need more complex proof search algorithms. In Section 10.1 we introduce
some preliminary notions and two basic procedures which will be used as
modules in the subsequent algorithms. Section 10.2. provides the simplest
solution for logics K, D, T and some discussion of optimization techniques.
In Section 10.3 we define a procedure for some transitive logics, whereas
in the next one we deal with symmetric and Euclidean logics. In this con-
text also problems connected with loop control are discussed. Finally, in
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Section 10.5, we introduce algorithms for linear logics. All completeness
proofs based on our procedures require only downward saturation of sets of
formulae with the same label, in contrast to the proof from the preceding
Chapter based on less efficient technique of relative maximalization.

We focus only on the problem of proof search for normal basic logics
and linear (temporal) logics. Suitable algorithms for regular and monotonic
basic logics may be easily obtained on the basis of provided solutions. The
problem for congruent logics seems to be harder to solve. We leave open also
the question of direct proof search procedures for first-order modal logics
and an exact definition of labelled counterpart of AND2.

10.1 Analytic LND

In what follows we will be using as a basis a system LAND1, i.e. LND
restricted only to elimination rules and to (analytic) [LRED] as the only
proof construction rule. It is evident that such a system is a labelled version
of AND1 from Chapter 4, hence the name. We have already dealt with such
a system for linear logics in the preceding Chapter.

It should be noted however that the problem of analyticity in case of
labeled systems is not as obvious as in case of nonlabelled ones. Applications
of admissible rules do not introduce other formulae than elements of {¬ϕ}
(where ϕ is a formula we are attempting to prove) but (LπE) systematically
introduces new labels into a derivation. So subformula property holds but
there is no substructure property with respect to some predefined and finite
set of labels. We will see that in case of logics that are not transitive
for any D the set of LAB(U(D)) is always finite. In case of transitive
logics this property does not hold but it may be obtained with the help
of additional techniques. In fact, for constructive completeness proof of
our systems the termination of respective procedures is not necessary. It
is sufficient if they are fair, in the sense that for every action which must
be performed there is a stage where it will be eventually performed. It
is the case of constructive completeness proofs for first-order logics, where
undecidability excludes termination. But we consider only decidable logics
so it will be a good thing to obtain termination as well.

We base our completeness and decidability results on strategies intro-
duced by Fitting [93, 92] and refined for single step tableaux by Massacci
[185, 186]. An excellent presentation is provided by Goré [117]. We follow
it quite closely, in particular for simplicity we limit ourconsiderations to
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monomodal basic logics. Briefly, in order to prove completeness of analytic
formalization of suitable logic L one must do the following:

1. Define a fair proof-search procedure which provides either a proof or
a tableau/derivation with open but completed set of formulae; in case
we want a decision procedure it must be also terminating.

2. Define suitable labelled version of Hintikka set and prove model-existence
lemma for it; in particular, it must be shown that constructed model
is really a model for L (matching lemma).

3. We must show that a (completed) set of labelled formulae obtained by
the application of proof-search procedure is really a Hintikka set; for
that we need to know that this set is strongly generated (generation
lemma).

From this completeness follows easily by contraposition. Assume that �L ϕ,
then, by 1. we obtain an open completed set of l-formulae containing 1 : ¬ϕ.
From 3. and generation lemma follows that this set is a Hintikka set. From
2. follows the existence of L-model satisfying ¬ϕ, hence ϕ is not valid in L.

First, we briefly recall things needed to establish 2. and 3. and then we
focus on point 1. The presentation of 2. and 3. is based on [117] and [186]
hence we will pay attention only to things connected with temporal logics or
modifications connected with transfer of these solutions from the context of
TS to ND setting. The main concern of this Chapter is a detailed presenta-
tion of questions connected with defining fair and terminating proof search
procedures for ND systems. We have shown in Chapter 4 that the struc-
ture of ND derivations is connected with some subtleties already in CPL;
modal logics provide additional factors that make hard a direct transfer of
procedures defined for TS.

10.1.1 Labelled Hintikka Sets

In order to provide a constructive proof of completeness of LAND1-L we
must generalize the notions of l-saturation, downward saturation and Hin-
tikka set, introduced in Chapter 4 for classical logic. For simplification we
assume, as in the completeness proof from the previous Chapter, that σ, τ, θ
will be used not only for denoting labels but also for denoting sets of formu-
lae labelled by suitable item. A context makes it clear which usage is being
adressed.
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Definition 10.1 (L-saturated sets)

Let X be a strongly generated set of labelled formulae and σ ⊆ FOR(X):

A. σ is Ll-saturated in L if the following hold:

1. if ¬¬ϕ ∈ σ, then ϕ ∈ σ,

2. if α ∈ σ, then α1 ∈ σ and α2 ∈ σ,

3. if β ∈ σ and −βi ∈ σ, then βj ∈ σ; for i �= j ∈ {1, 2}.

B. σ is L-downward saturated in L, if it is Ll-saturated in L, but instead of
condition 3. it satisfies:

3′. if β ∈ σ, then β1 ∈ σ or β2 ∈ σ

C. X is L-Hintikka set in L iff for every σ ⊆ FOR(X):

1. σ is L-downward saturated in L,

2. σ is L-consistent, i.e. if some formula belongs to σ, then its comple-
ment does not.

3. if σ : νi ∈ X, then τ : ν ∈ X, for every τ such that σ � τ ,

4. if σ : πi ∈ X, then τ : π ∈ X, for some τ such that σ � τ .

For temporal logics we have the following conditions instead of condi-
tions 3. and 4.:

3. if σ : νF ∈ X, then τ : ν ∈ X, for every τ such that σ � τ ,

4. if σ : πF ∈ X, then τ : π ∈ X, for some τ such that σ � τ ,

5. if σ : νP ∈ X, then τ : ν ∈ X, for every τ such that τ � σ,

6. if σ : πP ∈ X, then τ : π ∈ X, for some τ such that τ � σ.

Following Goré [117] we will use a symbol � for binary relation on the
set of strongly generated labels. A definition depends on the properties of
relation of accessibility in suitable class of frames and is specified for every
logic in the table.
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Logic σ � τ

K τ = σ.k
D τ = σ.k or (τ = σ and σ is final)
T τ = σ.k or τ = σ
K4 τ = σ.θ and | θ |≥ 1
KB τ = σ.k or σ = τ.k
K5 τ = σ.k or (| τ |≥ 2 and | σ |≥ 2)

KD4 (τ = σ.θ and | θ |≥ 1) or (τ = σ and σ is final)
KDB (τ = σ.k or σ = τ.k) or σ = τ = 1 is the only label
KD5 like for K5 or σ = τ = 1 is the only label
K45 (τ = σ.θ and | θ |≥ 1) or (| τ |≥ 2 and | σ |≥ 2)
K4B � is universal relation and there are at least two different labels
KD45 like for K45 or σ = τ = 1 is the only label

B τ = σ.k or σ = τ.k or τ = σ
S4 (τ = σ.θ and | θ |≥ 1) or τ = σ
S5 � is universal
Kt τ = σ.k and σ.k is an F -label or σ = τ.k and τ.k is a P -label
Kt4 � is a transitive closure of � for Kt4

In case of serial logics a final label is any label with no children. We
have added also a definition of � for Kt and Kt4. For the latter we could
not use a characterisation like for K4 since the extension of label σ is not
necessarily in relation � to σ. For example, let 1.2 be a P -label and 1.2.1
an F -label, then 1 � 1.2.1 does not hold.

Now we are in a position to define a special kind of frame:

Definition 10.2 (Hintikka frame)

Let X be L-Hintikka set for L, then Hintikka frame for L is an ordered pair
FH = 〈W, {R}〉, where: (a) W = LAB(X), (b) R = �.

For all basic normal logics and for respective temporal logics the follow-
ing holds:

Lemma 10.1 (Matching) FH for L belongs to F characterising L.

Proof requires systematic checking that � satisfies conditions for R. One
may find in Goré [117] and Massacci [186] a demonstration of some cases.
For temporal logics it is straightforward, in particular, transitivity follows
by definition.
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For completeness proof the key result is provided by model-existence
lemma which is an analogon of lemma 4.1.

Lemma 10.2 (Satisfiability of L-Hintikka sets) Let X be an L-Hintikka
set for L, and MH — an L-model on FH such that V(p) = {σ ⊆ FOR(X) :
p ∈ σ}, then: σ : ψ ∈ X implies σ � ψ,

We leave a standard proof by induction on the length of a formula to
the reader.1

By Lemma 10.2 for completeness it is sufficient to define a proof search
procedure such that in case of a formula nonprovable in L, U(D) appears
to be an L-Hintikka set for L. We will introduce four such algorithms since
the presence (or lack) of transitivity or symmetry or euclideaness, requires
significant modifications. Independently of the kind of logic we put some
constraints on our procedures. Sets of formulae obtained by them must be
completed in the sense that all possible rules were applied to all formulae.
On the other hand, we do not want to have more than one occurence of
each formula and there are possible situations where we did not applied
a rule to some formula but a conclusion is already present. A formula to
which no rule applies, since every consequence of every rule is already in the
set, is classified as used formula. Note that the definition of used formula
admits a situation where a consequence of some rule application may be
already present in the completed set even if we haven’t applied this rule
to the premise. In particular, we are not forced to an application of π-
rule and enlarging of a model when π is already present in some accessible
label. Moreover, we add a constraint that such label-generating rules may
be applied only once to the same premise. We note one more result:

Lemma 10.3 (Generation) U(D) at every stage of any derivation is a
strongly generated set.

It is easy to check that the set of labels of any derivation with the relation
≺, where σ ≺ τ iff τ is a child of σ, is finitely generated tree; it follows from
the property of being strongly generated. What is perhaps not so obvious is
the fact that during the process of closing a subderivation we do not loose
this property. But it follows from the fact that children of some labels are
always present either on the same level of derivation where parents occur or

1Note that in case ψ is a negated formula ¬ϕ we must consider all cases which ϕ may
obtain.
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in some nested subderivations. Hence, it is impossible that after a closure
of some subderivation we obtain a situation to the effect that some, e.g. σ
and σ.k.n is present in the current U(D) but σ.k is not. In particular, U(D)
of every open and completed derivation is a strongly generated set.

Assume for the moment that we have a suitable procedure which for
non-theses of L produces open and completed derivations. The following
holds:

Lemma 10.4 (Completion) U(D) of open and completed derivation for
L is an L-Hintikka set for L.

Proof We will show the case of Kt4. Conditions 1. and 2. from the
definition of L-Hintikka set hold because all classical rules were used and
the set is open. Clauses 4. and 6. are satisfied because π-formulae were
used. For example, if πP ∈ σ, then, because it must have been used, either
π ∈ σ.i for some P -label by application of (LπPE) or this rule was not
applied because π was already present in some �-accessible label. Hence
there is some τ � σ, not necessarily σ.i, which satisfies the succedent of
clause 6.

For clause 3., assume that νF ∈ σ and σ � τ . Either τ is a direct
neighbour of σ (i.e. either τ is a son (i.e. F -label) of σ or σ is a daughter
(i.e. P -label) of τ) or there is a chain of intermediate labels creating �-path
from σ to τ . In the first case ν ∈ τ either by (LνFE) or by (LBνFE) since
νF is used. In the second case we proceed by induction on the length of
this chain of labels; generation lemma guarantees that all elements of this
chain are present in U(D). For the basis suppose we have σ � θ � τ and θ is
a direct neighbour of both labels. There are three cases: θ a son of σ and τ
a son of θ, or θ a daugther of τ and σ a daughter of θ, or σ a daughter of
θ and τ a son of θ. The clause is satisfied either by the application of (L4)
and (LνFE), or by (LB4νF ) and (LBνF ), or by (LB4νF ) and (LνF ). For
induction step we assume that a clause is satisfied for every �-path of length
n and consider a path of length n+ 1 leading from σ to τ . Let θ be a direct
neighbour of σ in this �-path, then by (L4) or (BL4νF ) considered νF is
transferred to θ. �-path from θ to τ is of length n hence it is satisfied by
induction hypothesis. Clause 5. is dealt with by the analogical argument.

Now, the only element necessary to obtain a completeness proof is a fair
proof-search procedure for LAND1. The rest of the Chapter is concerned
with this question.
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10.1.2 Basic Procedures

Algorithms of proof search in labelled TS for normal basic logics may be
found in Fitting, Goré and Massacci (cf. [93, 117, 185]. Fitting’s algorithm,
modified by Goré, is an example of a breath-first procedure, so – as we
explained in Chapter 4 – is not suitable for direct adaptation to ND systems.
Massacci applies a depth-first procedure with some strategy of preference
for the choice of a formula which is handled first at some stage. Massacci
at first applies (LπE) to all π-formulae on some branch and then considers
other formulae. Although his procedure may be adapted to ND we propose a
different solution which may be just added to the procedure from Chapter 4
which was proved to be fair and terminating. It seems that this approach
is better if we want to focus on specific problems connected with several
classes of logics. Moreover, these algorithms may be generalized further to
cover also linear logics, whereas Massacci’s procedure seems to be extendible
only to the case of S4.3.

Although all procedures we introduce below are based on the solution
from Chapter 4 it is worth noting that different approaches are possible
when we extend it to modal logics. In the setting of labelled systems one
may distinguish at least two principal strategies. On syntactical level the
difference between them concerns the order of application of rules, but it
is better to understand their sense in semantical terms. Briefly, either we
prefer a saturation of a world and postpone introduction of new states, or
we build a domain of a model first and work out the details of particular
worlds later. Clearly, the alternative we have sketched is not exhaustive.
One may find algorithms for labelled TS’s, where formulae on the branch
are dealt with one by one which means that in the attempted model the
process of creation of new worlds and their saturation is not separated, e.g.
the procedure of Fitting in [93] or of Goré in [117].

The first approach may be called a strategy of “saturation before enlarge-
ment (of a model)”. In this approach we always first perform a saturation of
some σ before we apply π-rule and start a saturation of the next state in the
attempted model. Algorithms of this sort for several versions of nonlabelled
TS’s may be found e.g. in [169, 116]. Let us note that for standard TS in
Hintikka format it is the only possible strategy because π-rules correspond
to a jump from one state to the new one with a transfer of all admissible
formulae. There is no possibility of returning to the “old” state. That’s
why we must first saturate a set of formulae in some state before we leave
it forever.
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Clearly, in this approach we encounter branching earlier than in clas-
sical case because applications of β-rules usually go before applications of
nonbranching modal rules. From the standpoint of complexity of obtained
proof-trees it is not very satisfying. In case of a derivation in LND it corre-
sponds to the situation of opening new subderivations as long as we saturate
suitable σ, before we apply π-rule and introduce a new label. The number
of these subderivations is usually smaller in ND than the number of branch-
ing in standard TS because KE (and ND) is exponentially better in this
respect (cf. remarks in Chapters 3 and 4) but still we may be forced to ex-
cessive branching. We have already discussed disadvantages of uncontrolled
branching or increasing the depth of a derivation in classical logic. More-
over, in modal logics – as we will see – it may lead to additional troubles,
as was observed by Horrocks [133].

The second strategy works by enlarging a model before a saturation. In
such algorithms we first apply all nonbranching rules that increase a length
of the current subderivation and after that we start a new subderivation (or
introduce branching in TS) if it is required. It means that we may often
apply π- and ν-rules before we obtain downward saturation of any world in
a model. In semantic terms it corresponds to the addition of new worlds
and free walking from one world to another in attempted model. Such a
strategy may be realized in labelled systems or in other nonstandard TS or
SC which are flexible enough to allow unrestricted jumping from state to
state in a model. An example of such a procedure for labelled tableaux may
be found in Massacci [186], although he does not require that β-rules must
be applied as a last resort. It is also characteristic for his algorithm that
(LπE) is applied to all π-formulae with the same label in one step, whereas
in other procedures only one π-formula is taken under consideration.

It seems that this strategy is a better choice in case of depth-first algo-
rithms. One may find numerous examples where it leads to simpler deriva-
tions, especially for theses with many nested modal functors. In this case
one may faster obtain R-path to just this state σ, where contradiction arises
without necessity of saturation of all R-ancestors of σ. It is not difficult to
find examples where we may easily construct a short proof of depth 1 when
proceeding in this way, while in consequence of application of the former
strategy (i.e. saturation first) we obtain a very long and complex proof of
high depth with numerous repetitions of the same sequences of inferences
in different subproofs (or branches).

But we have already remarked that possibility of obtaining short proofs
does not mean that the space of proof-search is smaller – it may be just
the opposite. A procedure may admit many different proofs, including also
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short ones, but it may be difficult to find them. Usually searching for short
proofs is connected with the proper choice of a formulae we deal with in
crucial stages, and this is nondeterministic. In fact, there are cases where
the freedom of walking from world to world may result in exponentially
bounded space of search for problems which are known to be PSPACE-
complete.2 In these cases the first strategy is better behaved than the
second.

There is one more point connected with peculiarities of ND realization
which causes that, despite the flexibility offered by labels, we have chosen
the first strategy for later development. On the ground of LND, a demon-
stration of correctness of algorithms based on the second strategy is much
more complicated. Moreover – as we will show – in case of transitive logics
an implementation of such algorithms may lead to the loss of complete-
ness. So our constructive proofs will be based on the strategy “saturation
before enlargement”, but in case of logics which are neither transitive nor
symmetric we will sketch also alternative solution in remarks concerning
optimization.

All solutions are based on the procedure SAT(σ) which is a modal mod-
ification of SAT(U(D)):

SAT(σ) PROCEDURE

Input: a set σ ⊆FOR(U(D)) of some derivation
Output: L-downward saturated σ

1. Until σ is not Ll-saturated, do
apply all static rules to every U-formula.

2. If σ is not L-downward saturated, then
choose the first unused β-formula from σ, start a new subderivation
(write down SHOW: σ : βi ⊕ σ : −βi), and goto 1.
else stop.

Termination and fairness is proved exactly as for SAT(U(D)) in Chap-
ter 4. Note that in step 1. the application of all static rules is required
which means that if the logic is serial or reflexive, then except rules for α-
and β-formulae we must apply also suitable ν-rules ((LD) or (LT )).

Additionally, we introduce as a separate module a procedure for enlarg-
ing a model EXT(U(D)). It holds for all logics considered in this section
and is defined accordingly:

2More detailed account of complexity problems of several techniques may be found e.g.
in Massacci [186].
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EXT(U(D)) PROCEDURE

Input: a set U(D) with chosen unused π-formula and LAB(U(D)).
Output: LAB(U(D)) enlarged with one element.

1. Apply (LπE) to a formula introducing new label τ to LAB(U(D)).
2. Apply ν-rules to all νi-formulae in the parent of τ .
3. Declare σ := τ ; stop.

Clearly, in step 2. we apply all ν-rules belonging to LND for respective
logic which involve transition from the parent (label) to its fresh child. In
practice, in logics without transitivity, it is just (LνE) and additionally in
Euclidean logics (L5.4) (or (L5) in K5 and KD5), in transitive logics it is
also (L4). The remaining ν-rules are either static (and their application is
governed by SAT(σ)), or they involve reverse transition, from child-label to
its parent. The latter rules will be treated separately in Section 10.4.

10.2 Logics K, D, T

The algorithm defined below yields decision procedure for K, D, T.

ALGORITHM 2

Input: A formula ϕ (a candidate for a thesis of L) and the set LAB(U(D))={1}.
Output: A proof of ϕ or a finite open derivation with U(D) being L-Hintikka
set for L, containing 1 : −ϕ and finite set LAB(U(D)).

0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ as the beginning of a
derivation; declare σ := 1, LAB(U(D)) = {1}.

1. Call SAT(σ) to the current label.
2. If σ is inconsistent, then

apply (L ⊥ I) and close current subderivation by [LRED];
2.1. If the degree of closed subderivation = 1, then stop: � ϕ

else declare σ := τ , where τ is a label of S-formula opening
closed subderivation, and goto step 1.

3. If there is an unused π-formula in U(D), then:
3.1. choose the first one in U(D),
3.2. Call EXT(U(D)),
3.3. Goto step 1.
else stop: ϕ has no proof.
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Let us comment on a few features of algorithm 2.

A. In step 3.1. we mean the first π-formula in a derivation (going from the
top), not the first in currently saturated set σ. Otherwise some π-formulae
might be never used.

B. Note that conditional subinstruction for step 2. leads not only to the
closure of current subderivation (in case of inconsistency) and returning to
step 1. (in case it has degree higher than 1), but requires a new declaration of
σ which must be saturated. It is necessary because some part of saturated
set with the same label is now boxed and we should start its saturation
again to guarantee that in case of open derivation, its U(D) is indeed an L-
Hintikka set. Of course, it may appear that previous S-formula of this boxed
subproof is enough to provide a saturated set; in this case the procedure
SAT(σ) immediately stops.

C. According to the definition of “used” modal formula, before we apply a
rule to some σ : πi, we must check if there is no �-accessible τ , where π
holds. If there is some, then σ : πi is immediately signed as used; otherwise
we first apply (LπE) to it. But here the architecture of ND may cause
some problems. A situation of π-formulae is quite similar to a situation of β-
formulae (cf. the proof of termination of Algorithm 1 in Chapter 4). Usually,
the conclusion of an application of (LπE) is not in the same subderivation
where the premise but in some nested subderivation of higher degree. It
is a consequence of our algorithm which first saturates current σ making a
derivation of depth n ≥ 1, and then takes some unused π-formula from the
top of a derivation. Because nested subderivation containing a conclusion of
this (LπE) application may be later closed, then the premise may become
again unused. To take care of this situation we should admit that π-formula
is eventually used if the conclusion is in the same subderivation where it is
located. In this situation it may be marked by U as used, similarly as
nonmodal formulae. But if a conclusion is put in a nested subderivation,
then a premise should be treated as used as long as this subderivation is
open. We may mark this conditional status of being used with CU, and
delete it everytime a subderivation containing a conclusion is boxed. Such π-
formula is retrieved and may be used again. Note however, that the number
of calls for EXT(U(D)) to one formula σ : πi must be finite, since in one
subderivation it is applied once and the number of nested subderivations
(or nodes in corresponding tree – T (D)) is finite. A formal proof may be
provided similarly as for β-formulae in Lemma 4.4.
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D. A situation of every ν-formula is analogous but the number of applica-
tions of ν-rules to each one must be multiplied by the number of different
π-formulae belonging to the same set σ. In practice, we must apply similar
principle concerning marking as (conditionally) used with additional con-
dition that they are marked when all π-formulae (from the same σ) were
processed and delete marks if at least one such π-formula is retrieved. A
bit different case applies if in suitable σ there is no π-formula but there
are ν-formulae. In case of T these formulae will be used by application of
SAT(σ) because (LT ) is a static rule. In K we must mark them as used
because in attempted model they will be satisfied trivially since σ is a “dead
end” in a model (no accessible states).

We show the following:

Lemma 10.5 (Termination of algorithm 2) For any ϕ, algorithm 2 pro-
duces a finite derivation.

Proof Note that the performance of every subprocedure is terminating. An
addition of modalities has no impact on branching factor or on the length
of branches of T (D) which is a tree representation of our derivation (cf.
Chapter 4). Hence both Lemmas 4.3 and 4.4 hold, and by König lemma
we obtain a finite tree. The only thing we must check is whether every
subderivation (a node of T (D)) is finite in the presence of modalities.

First, {¬ϕ} is finite and every σ is its subset; moreover, consistent σ
must contain not more than 1/2n elements, where n is the cardinality of
{¬ϕ}. So infinite derivation is possible only if we could generate infinite
LAB(U(D)) by repeated application of (LπE). Fitting [93] gives proofs of
two facts concerning LAB(U(D)) (cf. also [117] and [185]):

1. For every k, the number of labels σ of this length (i.e. | σ |= k) is
finite.

2. There is n such that for every σ, n ≥| σ |.

Since, by definition of algorithm, repeated application of a rule to some π-
formula in the same subderivation is excluded (cf. commentary C. above)
then, because {¬ϕ} and LAB(U(D)) are finite, every node of T (D) (i.e.
every separate subderivation) is finite.

Lemma 10.6 (Fairness of algorithm 2) For every ϕ, algorithm 2 yields
(in finite time) either a proof or a falsifying model in normal logic L ∈
{K,D,T}.
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Proof It follows from the preceding lemma that if ϕ has no proof, then
we must obtain a finite derivation, where every formula is marked by U or
CU. But it means that U(D) is completed and so it is an L-Hintikka set for
L containing 1:¬ϕ. We leave a standard proof to the reader.

A direct consequence of the above lemma is

Theorem 10.1 (Completeness of LAND1) If |=L ϕ, then �LAND1−L
ϕ, for normal logic L ∈ {K,D,T}.

Before we go on to other logics it is worth doing some remarks concerning
possible optimization of proof search in LAND1.

10.2.1 Optimization

Remark 10.1 (Problems with cut) We have noticed that procedures
applying strategy of “saturation before enlargement” usually lead to very
redundant and inefficient derivations. In case of modal logics it is not only
a problem of excessive branching as such. It is a problem of cut applied on
modal formulae. Horrocks [133] pointed out that even analytic cut applied
on modal formulae may lead to disastrous effects. Such a cut always gives
some π-formula in one branch which leads to the introduction of a new state
in a model. Negative impact of this phenomenon may be controlled to some
extent. One possible solution is to use modal formulae for cut only as a last
resort. In Algorithm 2 we are forced to cut (i.e. to introduce subderivations)
only on unused β-formulae. We may add some preference strategy on the
set of these formulae:

A. First choose β-formulae having both direct subformulae nonmodal.

B. Next choose from these β-formulae, where one βi is not modal, and
the other (βj) is ν-formula; introduce a new subderivation on the basis of
nonmodal βi and its complement.

C. Next choose from these β-formulae, where one βi is not modal, and
the other (βj) is π-formula; introduce a new subderivation on the basis of
nonmodal βi and its complement but additionally select −βi as S-formula
and βi as an assumption.

D. In case where we must open a new subderivation on the basis of modal
formulae (the only unused β-formulae consist of two modal components),
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select πi as an S-formula and its complement (which must be ν-formula) as
an assumption.

In this way we postpone a process of introduction of new states to at-
tempted model, and if the construction of a derivation ends up earlier we
may avoid much work. Note that a detailed specification in points C i D,
which formula must be used as S-formula and which as an assumption is
also a consequence of the idea of adding new labels only eventually.

An application of this strategy not always saves us from excessive en-
largement of LAB(U(D)). It is possible to use more radical solution however.
Recall that we may add to ND an admissible rule [β] being a counterpart
of β-rule from tableaux (cf. Chapter 4). In case D above, if at least one of
unused β-formulae has ν-formulae as both components we may introduce a
new subderivation by [β] instead of [LRED]. It means that we will use β1

and β2 – both ν-formulae as an S-formula and as an assumption. Note that
if we consider such improvement then the order of point C and D should be
changed, because introduction of a subderivation on the basis of β-formula
containing π-formula finally may lead to the creation of a new label. ♣

Remark 10.2 (Serial Logics) Excessive enlargement of a model may take
place especially in case of serial logics. (LD) is a static rule so it leads to
increasing of the number of π-formulae in every label quite early. It is easy to
observe that every π-formula deduced by (LD), after application of (LπE)
to it and then a series of application of (LνE) to ν-formulae, produces a set
identical with any other set created by means of other π-formula deduced
first by (LD) (they have only different labels). For example: in σ we have
�ϕ and �ψ but no π-formula. After application of (LD) we obtain ♦ϕ and
♦ψ leading in consequence to the application of procedure EXT(U(D)) to
both, and to the creation of two new labels. But each one, after running of
EXT(U(D)), consists of ϕ and ψ.

Possible way of avoiding such a situation is to replace (LD) with (LD′),
as in Fitting’s system. However, such a solution forces us to substantial
modifications of Algorithm 2. Instead, we may keep (LD) and the algorithm
but with the addition of some control mechanism. In case of application
of (LπE) to the first of π-formulae in some σ, we should mark as used all
π-formulae obtained in σ by the application of (LD). ♣

Remark 10.3 (Alternative Strategy) Let us consider an algorithm
which realizes a strategy of “model enlargement before saturation” and
which in many cases provides shorter proofs. It is a consequence of late
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introduction of new subderivations which saves us from repetitions of se-
quences of inferences in different places of the same proof. In order to find
a proof as soon as possible we decided also to put consistency test of U(D)
rather early in the hierarchy of stages of a procedure. It is common in
tableau procedures to put such a test at the end of construction of a branch
because it is memory expensive. It is connected with the fact that if we ap-
ply simple algorithm with no preference strategies we do not need to check
all the branch – just take the next formula and apply suitable rule, whereas
consistency test requires the search for complementary formulae through all
the branch (cf. [95]). In case of ND we are in many cases forced to prelim-
inary checking at least the part of U(D) (searching for the second premise
for β-rules, introducing subderivations), so frequent applications of consis-
tency test is not the worst but may speed up a proof by earlier detection of
inconsistency. Clearly, in this case the test must not be restricted to literals
but search for inconsistency in the whole U(D).

A demonstration of fairness and termination of this algorithm needs a
little harder work, than for algorithm 2, so we leave it because of the lack
of space, and state only a description in pseudo-code.

ALGORITHM 2′

Input and output as for algorithm 2.

0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ and
declare σ := 1, LAB(U(D)) = {1}.

1. Until U(D) is not Ll-saturated, do
apply static rules to every U-formula.

2. If U(D) is inconsistent, then
apply (L ⊥ I) and close the current subderivation by [LRED];
2.1. If the degree of boxed subderivation = 1, then stop: � ϕ

else goto step 1.
3. If there are unused π-formulae in U(D), then

select the first one in U(D), apply suitable rule and goto step 1.
4. If there are unused ν-formulae in U(D), then

select the first one in U(D), apply suitable rule and goto step 1.
5. If U(D) is not L-downward saturated, then

select the first unused β-formula in U(D), start a new subderivation
(writing down SHOW:σ : βi ⊕ σ : −βi) and goto step 1.
else stop: ϕ has no proof.
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10.3 Transitive Logics and Loop-Control

Transitive logics generate additional problems discussed in many places (e.g.
[93, 117]). So we omit the details and show some solution for K4, KD4,
S4.

An argument which was stated in favor of termination of algorithm 2
fails for these logics because the fact 2 used in the proof of Lemma 10.4.
does not hold. It is not true that for each derivation there is some n which
bounds the length of labels. The key problem is with a rule (L4), where we
rewrite ν-formula to a new label. (L4) does not satisfy subformula property
and potentially leads to generation of infinite derivations. Simple example
illustrates the point:

1 SHOW: 1:�♦p→ ¬♦�p
2 1:¬(�♦p→ ¬♦�p) ass.
3 1:�♦p (2, LαE)
4 1:♦�p (2, LαE)
5 1.1:�p (4, LπE)
6 1.1:♦p (3, LνE)
7 1.1:�♦p (3, L4)
8 1.1.1:p (6, LπE)
9 1.1.1:♦p (7, LνE)
10 1.1.1:�♦p (7, L4)
11 1.1.1.1:p (9, LπE)
12 1.1.1.1:♦p (10, LνE)
13 1.1.1.1:�♦p (10, L4)

e.t.c.

As long as we are interested in completeness proof and do not need a
decision procedure it is not a problem. Goré in [117] describes an algorithm
which is not terminating but guarantees that every π-formula will be used
at some stage and that every ν-formula will be fulfilled in every accessible
label. Our Algorithm 2 is rather different from that of Goré but has the
same property – an addition of (L4) has no impact on its fairness. But it
is interesting to modify a procedure in such a way that decision procedure
may be extracted. We may borrow some solution from techniques provided
for automated theorem proving (one may consult e.g. Horrocks [134]).

Let us note that the number of consistent subsets of {¬ϕ} is finite.
(L4) does not satisfy subformula property in the strict sense, but it does
not add new elements to {¬ϕ}. Hence on infinite branch we must encounter
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repeatedly the same sets of formulae but with different labels. The situation
in attempted model is the following: we have n-element �-path leading from
σ1 to σn, where σn ⊆ σ1. It makes possible an identification of σn with σ1,
which yields a cluster containing all labels from σ1 to σn−1. It requires
an addition of some loop control mechanism to Algorithm 2; let us call it
LOOP(σ). The test consists of checking whether for tested σ there is some
�-ancestor θ such that σ ⊆ θ. If it holds we say that θ blocks σ. In this case
we delete σ from LAB(U(D)), because in the attempted model we identify
it with the blocking label. Modified algorithm looks as follows:

ALGORITHM 3

Input and output as for algorithm 2.

0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ as the beginning of a
derivation; declare σ := 1, LAB(U(D)) = {1}.

1. Call SAT(σ) to the current label.
2. If σ is inconsistent, then

apply (L ⊥ I) and close current subderivation by [LRED];
2.1. If the degree of closed subderivation = 1, then stop: � ϕ

else declare σ := τ and goto step 1
(where τ is a label of S-formula opening closed subderivation).

3. If there is unused π-formula in U(D), then:
3.1. choose the first one in U(D),
3.2. Call LOOP(τ), where τ is a label of the chosen π-formula,
3.3. If τ is blocked by θ, then delete τ from LAB(U(D))

and goto step 3.
else call EXT(U(D)) and goto step 1.

else stop: ϕ has no proof.

Note the localization of LOOP(σ). We leave a discussion of other pos-
sible solutions but one remark is in order. Deletion of τ from LAB(U(D))
is not an elimination of suitable part of a derivation but it means that all
π-formulae from τ are marked as used. Introduction of loop control has
the effect that termination result for Algorithm 2 holds also for the present
version. It is easy to check that obtained consistent U(D) without formulae
belonging to labels deleted in step 3.3, is a Hintikka set for suitable transi-
tive logic. So the results from the preceding subsection hold for Algorithm 3
and we have:
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Lemma 10.7 (Termination and fairness of algorithm 3) For every ϕ,
an algorithm 3 yields in finite time either a proof or a falsifying model in
normal logic L ∈ {K4,KD4,S4}.

Theorem 10.2 (Completeness) If |=L ϕ, then �LAND1−L ϕ, for normal
logic L ∈ {K4,KD4,S4}.

Remarks concerning optimization from the preceding subsection still
apply except Remark 10.3. An algorithm stated there is not possible to
adapt for transitive logics because it is incomplete. Here is a simple example:
a formula ♦�p ∧ �♦q → ♦((r → p) ∧ (r → q)) is a thesis of K4 but the
following derivation realized by algorithm 2′ does not stop.

1 SHOW: 1:♦�p ∧ �♦q → ♦((r → p) ∧ (r → q))
2 1:¬(♦�p ∧ �♦q → ♦((r → p) ∧ (r → q))) ass.
3 1:♦�p ∧ �♦q (2, LαE)
4 1:¬♦((r → p) ∧ (r → q)) (2, LαE)
5 1:♦�p (3, LαE)
6 1:�♦q (3, LαE)
7 1.1:�p (5, LπE)
8 1.1:¬((r → p) ∧ (r → q)) (4, LνE)
9 1.1:¬♦((r → p) ∧ (r → q)) (4, L4)
10 1.1:♦q (6, LνE)
11 1.1:�♦q (6, L4)
12 1.1.1:q (10, LπE)
13 1.1.1:p (7, LνE)
14 1.1.1:�p (7, L4)
15 1.1.1:¬((r → p) ∧ (r → q)) (9, LνE)
16 1.1.1:¬♦((r → p) ∧ (r → q)) (9, L4)
17 1.1.1:♦q (11, LνE)
18 1.1.1:�♦q (11, L4)
19 1.1.1.1:q (17, LπE)

e.t.c.

One may easily check that the next six lines would be a repetition of lines
13–18 but with label 1.1.1 replaced by label 1.1.1.1, and – generally – every
next seven lines would be a repetition of lines 12–18 but with a new label.
It is forced by the strategy of enlargement before saturation which, in the
absence of minor premise, forbids the use of β-formula from line 15. If we
resign from the algorithm, we may already in line 16 introduce 1.1.1:r → p
as S-formula and 1.1.1:¬(r → p) as an assumption. One application of
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(LαE) to this assumption leads to contradiction with line 13 and to closure
of this subproof. Then we easily obtain a contradiction in outer derivation
((LβE) on line 15 and the new usable-line 16, then (LαE) on the result
of this inference), which yields a closure of the main subderivation and a
proof. The above example shows that in case of transitive logics we must
first saturate old labels before we start the new ones.

The other possible solution is an addition of some test for cycles. LOOP
(σ), as stated above is not sufficient because it presupposes saturation. A
test proposed by Massacci in [186] (similarly as that of Horrocks [134])
does not require saturation but compared sets of formulae must be identical
(requirement of subsumption is too weak if we get rid of saturation) and
moreover, if one of them is enlarged by a new formula in due course, then
blocking is broken. Such loop control test based on dynamic blocking will
be applied later for symmetric and Euclidean logics, because it is necessary
in this class of logics. In case of transitive logics we prefer to apply simpler
solution described above but one may try to modify alternative algorithm
2′ by addition of loop test based on dynamic blocking.

10.4 Symmetric and Euclidean Logics

10.4.1 No Transitivity

Logics characterized by symmetric or Euclidean frames generate specific
problems for automated proof search. Because transitivity introduces ad-
ditional complications we first focus on nontransitive logics. An algorithm
presented below is defined for logics KB, DB, B, K5, KD5 and bimodal
temporal Kt.

First we should note that, in all logics discussed so far, transfer rules
allow modal formulae only to be pushed forward, from a label to its exten-
sion. The shape of these rules forbids the possibility of moving backward,
to states already left. Algorithm 2 (and 3) is well suited to this kind of ν-
rules but it fails for symmetric or Euclidean logics because reverse transfer
of ν-formulae may be often impossible. Let us illustrate the point. One
may easily check that derivation for KB-thesis �(p → �q) → (♦p → q),
performed by Algorithm 2, yields (by SAT(σ) on σ = 1) U(D) = {1 : �(p→
�q), 1 : ♦p, 1 : ¬q}. Instruction 3 with EXT(U(D)) will add to U(D) for-
mulae 1.1 : p and 1.1 : p → �q. By SAT(σ) on σ = 1.1 we additionally
get 1.1 : �q. One application of (LB) to this formula would give 1 : q
and a contradiction, but Algorithm 2 is not able to perform this step. It is
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impossible because (LB) is a ν-rule and application of ν-rules is connected
with preliminary application of (LπE) in EXT(U(D)), but our U(D) does
not contain any unused π-formula. Hence, for such logics a combination of
applications of ν-rules with (LπE) in EXT(U(D)) is not enough; we need
an independent instruction in algorithm.

But this is still insufficient. An application of (LB) certainly requires the
old label to be saturated and tested for consistency once again. Moreover,
not only parent-label may change but also some other of her children. Let us
consider an example. In U(D) we have labelled sets σ, σ.1, σ.2 and σ.3 – all
of them saturated. σ.3 is the current label and contains ��ϕ. Independent
instruction for ν-formulae we have postulated above, run an application of
(LB) and yields σ : �ϕ. Now σ is a new current label being saturated again.
Assume that σ is still consistent; it must contain at least one additional ν-
formula (namely �ϕ) which might be not fulfilled in children of σ, and in
the parent of σ, if σ �= 1. Even if our additional instruction is formulated
sufficiently general and we apply to �ϕ not only (LB) but also (LνE), then
four (or three) labels should be changed in one step: the parent of σ, σ.1, σ.2
and σ.3 (unless some of them already contains ϕ). Such labels will be called
neighbours of σ (or i-neighbours in case of temporal logics), and defined as
follows:

Definition 10.3 (Neighbours of σ) τ is a neighbour (i-neighbour) of σ
iff:

• for KB, DB, B, τ = σ.k or σ = τ.k;

• for Kt, τ = σ.k and is i-label or σ = τ.k. and is j-label, where i �=
j ∈ {F, P}

• for K5, KD5,

(a) | τ |> 1, if | σ |> 1,

(b) τ = σ.k, otherwise.

To obtain a fair algorithm we must secure an application of SAT(σ) and
consistency test to each neighbour-label which was changed by the applica-
tion of independent instruction for ν-rules before we may start again with
instructions regulating application of rules to modal formulae. In proposed
Algorithm 4 we solve this problem by introduction of a new parameter con-
trolling construction of a derivation. A set ν(U(D)) ⊆ LAB(U(D)) will
contain all labels which were changed by additional application of ν-rules
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(except those provided by running EXT(U(D))). In the example above if
after application of a ν-rule to σ : �ϕ we obtain ϕ in σ.1, σ.2, σ.3 (and in
the parent of σ, if it exists), then these three or four labels are added to
ν(U(D)). This set is obviously empty at the start and should be empty at
the end, otherwise some labels from this set may be still not saturated. Dele-
tion of elements from ν(U(D)) is connected with calling SAT(σ) to them.
To guarantee that every element of ν(U(D)) will be eventually taken into
consideration we order them linearly by the relation ≺l defined accordingly:

Definition 10.4 (Order on labels) σ ≺l σ
′ iff, | σ |<| σ′ | or σ = τiθ

and σ′ = τjθ′, where i < j, | θ |=| θ′ |≥ 0, | τ |≥ 1.

It is easy to check that ≺l linearly orders any finite subset of the set
of labels which is strongly generated. Introduction of additional elements
leads to the next algorithm with input and output as in the preceding ones
but with additional parameter – ν(U(D)) ⊆ LAB(U(D)), which is empty in
input and (in case of an open derivation) in output .

ALGORITHM 4

Input and output as for algorithm 3, additionally with ν(U(D)) = ∅.

0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ as the beginning of a
derivation; declare σ := 1, LAB(U(D)) = {1}, ν(U(D)) = ∅.

1. Call SAT(σ) to the current label.
2. If σ is inconsistent, then

apply (L ⊥ I) and close a current subderivation by [LRED];
2.1. If the degree of closed subderivation = 1, then stop: � ϕ

else declare σ := τ , and goto step 1
(where τ is a label of S-formula opening closed subderivation)

3. Until there are some unused ν-formulae in σ, do
apply suitable ν-rules with respect to each neighbour of σ
and add this neighbour to ν(U(D)).

4. If ν(U(D)) �= ∅, then
declare σ := τ and ν(U(D)) := ν(U(D)) − {τ},
where τ is ≺l-first label in ν(U(D)) and goto step 1.

5. If there are unused π-formulae in U(D), then:
5.1. choose the first one in U(D),
5.2. call EXT(U(D)) and goto step 1.
else stop: ϕ has no proof.
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New elements have no impact on termination and fairness proof for Algo-
rithm 2. Let’s note that the localization of instruction 3. and 4. guarantees
that enlargement of a model with new states is not possible unless we use
all ν-formulae in all accessible states and then make a saturation and con-
sistency test in all of them. Finite number of neighbours of every label and
their systematic elimination from ν(U(D)) is sufficient for termination. So
we obtain:

Lemma 10.8 (Termination and fairness of algorithm 4) For every ϕ,
algorithm 4 yields in finite time either a proof or a falsifying model in normal
logic L ∈ {KB,KDB,B,K5,KD5,Kt}.

Theorem 10.3 (Completeness) If |=L ϕ, then �LAND1−L ϕ, for normal
logic L ∈ {KB,KDB,B,K5,KD5,Kt}.

10.4.2 Transitive Symmetric or Euclidean Logics

We already know that introduction of transitivity leads, due to the form of
(L4) (as well as (LB4)), to possibility of generation of infinite derivations.
Algorithm 4 must be modified analogously as Algorithm 2, by addition of
some loop-control device. So, for logics KB4, DB4, K54, K54D, S5,
Kt4 we obtain the following algorithm.

ALGORITHM 5

Input and output as for algorithm 4.

0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ as the beginning of a
derivation; declare σ := 1, LAB(U(D)) = {1}, ν(U(D)) = ∅.

1. Call SAT(σ) to the current label.
2. If σ is inconsistent, then

apply (L ⊥ E) and close current subderivation by [LRED];
2.1. If the degree of closed subderivation = 1, then stop: � ϕ

else declare σ := τ , and goto step 1
(where τ is a label of S-formula opening closed subderivation)

3. Until there are some unused ν-formulae in σ, do
apply suitable ν-rules with respect to each neighbour of σ
and add this neighbour to ν(U(D)).

4. If ν(U(D)) �= ∅, then
declare σ := τ and ν(U(D)) := ν(U(D)) − {τ},
where τ is ≺l-first label in ν(U(D)) and goto step 1.
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5. If there are unused π-formulae in U(D), then:
5.1. choose the first one in U(D),
5.2. Call LOOP(τ), where τ is a label of chosen π-formula,
5.3. If τ is blocked by θ, then

delete τ from LAB(U(D)) and goto step 5.
else call EXT(U(D)) and goto step 1.

else stop: ϕ has no proof.

Identical formulation of Conditions 5.2 and 5.3 as in Algorithm 3 does
not mean that performed operations are identical. In case of transitive
symmetric (and Euclidean) logics loop-control is more complicated. First,
it is not sufficient that the set of formulae with label σ is a subset of some
earlier set labelled by θ – they must be equal in order for σ to be blocked
by θ. Second, because of the possibility of enlargement of some (blocked
or blocking) set in later stages of proof construction (due to application of
(LB) and similar rules) we must admit that blocking will be broken. So, in
contrast to LOOP(σ) for transitive but not symmetric logics, where label is
blocked once and for all, here we assume that blocking is provisory and is
broken if one of the blocking set changes.

This solution is based on the technique of “dynamic blocking”, devised
by Horrocks [134] for implementation of tableau system for some versions
of description logics. The latter may be translated for multimodal normal
logics, so this technique may be also applied to them. An adaptation of
dynamic blocking to our algorithm is even simpler than in Horrocks’ system
since the parameter ν(U(D)) may be directly applied to loop-control. We
should implement a principle that blocking of σ by θ is possible only if nei-
ther label belongs to ν(U(D)); otherwise the blocking is broken. In contrast
to Horrocks’ system, our version does not require a distinction between di-
rect (equality of parent-label and its child) and indirect blocking (identity of
a set with some of its ancestors). It is possible because in our algorithm the
process of saturation of labels and application of ν-rules is made before the
selection of the next unused π-formula and LOOP-test, while in Horrocks’
procedure the test is performed on the occasion of application of other rules.

Thanks to the application of dynamic blocking Algorithm 5 is not only
fair for respective logics but also terminates. So we also obtain:

Lemma 10.9 (Termination and fairness of algorithm 5) For every ϕ,
algorithm 5 yields in finite time either a proof or a falsifying model in normal
logic L ∈ {KB4,KDB4,K45,KD45,S5,Kt4}.
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Theorem 10.4 (Completeness) If |=L ϕ, then �LAND1−L ϕ, for normal
logic L ∈ {KB4,KDB4,K45,KD45,S5,Kt4}.

10.5 Linear Logics

In the preceding Chapter we have shown that LAND1 for basic linear logics
is adequate. However, the procedure of proof search involved in the proof
is impractical. First, extracted falsifying models are usually infinite, hence
the proof does not provide a decision procedure although all these logics are
decidable (and coNP -complete) which was established by Ono and Naka-
mura already in [200]. Second, due to necessity of maximalization of every
label we are forced to make a lot of inessential inferences including many
applications of [LRED]. As for the first problem it may be easily solved by
providing some mechanism of loop control discussed in this Chapter. The
second one is more serious. Despite the fact that it is a relative maximal-
ization with respect to {¬ϕ} (where ϕ is a formula to be proved) and that
the process is finite, we obtain too much unnecessary subderivations. We
have already discussed the destructive effect of using cut (i.e. [LRED] in
LND) in modal logics, even in analytic form (cf. Remark 10.1) hence the
problem of finding procedures minimizing the number of its applications
is vital. In [151] an alternative approach was sketched which will be the
basis of the present development. It requires only L-downward saturation
of labels and may be naturally based on the technical apparatus used so far
in this Chapter.

Some refinements are needed however. In particular, accessibility of
labelled sets is defined not in the manner specified in Section 10.1 but rather
as in Chapter 9:

Definition 10.5 (Relation of accessibility) τ is accessible from σ iff:
(a) if νF ∈ σ, then νF ∈ τ i ν ∈ τ ,
(b) if νP ∈ τ , then νP ∈ σ i ν ∈ σ.

The difference is that now we do not require sets to be maximal but only
downward saturated.

Similarly as in Chapter 9 we build a graph of accessibility of labels
keeping under control the linearity of attempted model. But there are some
differences with respect to the definition of a chain stated there. Now the
chain is constructed not from single labels but rather from clusters of labels
which is necessary to secure a finite model.
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Definition 10.6 (Finite chain) Let C be a finite collection of clusters of
labelled sets of formulae such that every σ from every cluster in C is L-
downward saturated in {¬ϕ}, C is a chain in {¬ϕ} iff for any different τ
and θ: θ is accessible from τ or τ is accessible from θ.

C is fulfilled iff every π-formula in every label of every cluster in C is
used.

Proof that every fulfilled chain yields linear model does not require any
extra operations except those from Chapter 9. Transitivity is secured by
definition of accessibility relation and linearity by definition of C. From the
standpoint of intuition one may have some doubts – parallel time points are
admissible in such a model. But it is innesential from the technical point
of view. Let us recall that every chain of clusters may be transformed by
operation of bulldozing, yielding a chain of single points but infinite; and
this is just what we want to avoid (cf. [112]).

10.5.1 Finite Chains

The problem consists in providing such an algorithm of proof search which,
in case of open derivation, provides U(D) being finite chain. We must first of
all modify the procedure EXT(U(D)) because it additionaly selects a place
in C for newly introduced label. Assume that σ is a label of π-formula
which was chosen as the first (from the top of a derivation) unused in U(D).
In case of temporal logic this π-formula may be σ : πF or σ : πP . Because
of that we will define it in the parallel fashion; everything connected with
σ : πF will be put in the main text and everything concerning σ : πP will be
put in [ ]. In case of monomodal logics (K4.3, KD4.3, S4.3) it is enough
to leave the part of procedure contained in [ ]. τ will be used for immediate
successor [ancestor] of σ in C. For all linear logics which are not reflexive a
suitable procedure is defined as follows:

PROCEDURE EXT(U(D))’

Input: U(D) with chosen unused π-formula and C

Output: respective π-formula marked as used.

1.If σ does not belong to the last [first] cluster in C, then:
1.1.If τ : −π ∈U(D), then:

1.1.1.If τ : −(πF ) ∈U(D) [τ : −(πP ) ∈U(D)], then:
Apply (LπE) and mark σ : πF [σ : πP ] as used;
Add new σ.i to C between σ and τ ;
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Apply (LνFE) [(LνPE)] to every ν-formula in σ wrt. σ.i;
Declare σ := σ.i, stop.

1.1.2.Else add “SHOW:τ : −(πF ) ⊕ τ : πF ”
[“SHOW:τ : −(πP ) ⊕ τ : πP ”] to D;
Mark σ : πF [σ : πP ] as used;
Declare σ := τ , stop.

1.2.Else add “SHOW:τ : −π ⊕ τ : π” to D;
Mark σ : πF [σ : πP ] as used;
Declare σ := τ , stop.

2.Else apply (LπFE) [(LπPE)] and mark σ : πF [σ : πP ] as used;
Add new σ.i to the end [beginning] of C;
Apply (LνFE) [(LνPE)] to every ν-formula in σ wrt. σ.i;
Declare σ := σ.i, stop.

Clearly, the above procedure has still some computational drawbacks.
Since conditions for application of instruction 1.1 and 1.1.1 require checking
U(D) to see if some formulae are (not) in it, in the worst case we have to
search all U(D) twice. In practice it would be good to amalgamate both
instructions in order to get more efficient version. In case of reflexive logics
instruction 1.1.1. is simply superfluous and the following version is sufficient:

1.If σ does not belong to the last [first] cluster in C, then:
1.1.If τ : −(πF ) ∈U(D) [τ : −(πP ) ∈U(D)], then:

Apply (LπE) and mark σ : πF [σ : πP ] as used;
Add new σ.i to C between σ and τ ;
Apply (LνFE) [(LνPE)] to every ν-formula in σ wrt. σ.i;
Declare σ := σ.i, stop.

1.2.Else add “SHOW:τ : −π ⊕ τ : π” to D;
Mark σ : πF [σ : πP ] as used;
Declare σ := τ , stop.

2.Else apply (LπFE) [(LπPE)] and mark σ : πF [σ : πP ] as used;
Add new σ.i to the end [beginning] of C;
Apply (LνFE) [(LνPE)] to every ν-formula in σ wrt. σ.i;
Declare σ := σ.i, stop.

It is obvious that every performance of EXT(U(D))’ is finite exactly
as in case of the basic variant (for nonlinear logics). Higher complexity of
an algorithm follows from the necessity of providing linearity of attempted
model. It is guaranteed that every π-formula in U(D) must be eventually
used but it may takes different forms. Suitable π-rule is appliedonly if σ
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is in one of the outermost clusters or if its successor [ancestor] satisfies the
antecedent of condition 1.1 and 1.1.1. In the latter case a new label (σ.i)
is inserted before [after] τ . It is easy to observe that in U(D) we obtain
then τ : −πF [τ : −πP ], τ : −π, σ.i : π, hence we have a complete set of
premises needed for application of (3FF ) [(3PP )] to every νF -formula [νP -
formula] in σ.i with respect to τ , and (3FP ) [(3PF )] to every νP -formula
[νF -formula] in τ with respect to σ.i. It saves accessibility of τ from σ.i
[accessibility of σ.i from τ ] in updated C. In the remaining cases our πi is
used by addition of π to τ (in case of unsatisfiability of the antecedent of
the second instruction, i.e. in stage 1.1. leading to 1.2), or – if it leads to
inconsistency (when the antecedent of condition 1.1 is satisfied but that of
1.1.1 is not) – πi is moved to the next [earlier] label (point 1.1.2.). Since all
π-formulae are visited one by one going from the top, so it is certain that
τ : πi will become eventually the starting point for calling EXT(U(D)).
Let us notice that C is enlarged only by definitive use of πi; its moving to
some successor [ancestor] by application of 1.1.2. does not make C bigger.
Hence – by the finiteness of C – πi must be eventually used. In the worst
case it appears in the last [first] label in C and is covered by condition 1. An
application of π-rule (or satisfaction of πi by 1.2) yields satisfaction of all
occurences of this πi in all earlier [later] labels in C, which justifies marking
them all as used. It remains to define an algorithm in such a way as to make
sure that all labels in open and finite U(D) are saturated and accessible to
each other.

10.5.2 Proof Search Algorithm

Now we state an Algorithm 6 for bimodal temporal logics. Input and output
is as for Algorithm 3, but we additionaly must take into account C. Com-
plexity of the algorithm follows from the necessity of saturation of every
label before EXT(U(D)) is applied, because U(D) must be kept as a chain
all the time. We will show that before application of instruction 5., which
leads to elimination of successive π-formulae and possible enlargement of
C, all labels must be downward saturated. It guarantees that if we stop an
algorithm, because of the lack of unused π-formulae, we will obtain U(D)
which is a fulfilled chain.

ALGORITHM 6

Input and output as for algorithm 5.
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0. Start: Write down SHOW:1:ϕ⊕ 1 : −ϕ as the beginning of a
derivation; declare σ := 1, LAB(U(D)) = {1}, C = 〈{1}〉.

1. Call procedure SAT(σ) to the current label.
2. If σ is inconsistent, then

apply (L⊥I) and close current subderivation by [LRED];
2.1. If the degree of closed derivation = 1, then Stop: � ϕ

Else declare σ := τ and goto 1.
(where τ is a label of S-formula of closed subderivation)

3. If σ has immediate successor τ and unused νF -formulae, then:
3.1. apply suitable ν-rules with respect to τ ;
3.2. declare σ := τ , where τ is the successor of σ, and goto 1.
Else
4. If σ has immediate ancestor τ , then:

4.1. If there are unused νP -formulae, then:
4.1.1. apply suitable ν-rules with respect to τ ;
4.1.2. declare σ := τ , where τ is the ancestor of σ,
and goto 1.
Else declare σ := τ , where τ is the ancestor of σ,
and goto 4.

Else
5. If in U(D) there is unsued π-formula, then:

5.1. Select the first one in U(D),
5.2. Call LOOP(τ), where τ is a label of

selected π-formula,
5.3. If τ is blocked by θ, then

declare a cluster {τ = θ} and goto 5.
Else Call EXT(U(D)) and goto 1.

Else Stop: ϕ has no proof

Let us note that condition 3 forces us to check for every saturated and
consistent σ whether condition (a) of accessibility (cf. definition 10.6.) is
satisfied with respect to its successor in C. If it is not satisfied then we must
apply suitable rules to reach the effect. After this operation, the successor
of σ becomes the current label and it is being checked. These steps are
repeated until we reach the last label in C or stop earlier because of the lack
of suitable νF -formulae. Then condition 4. forces us to check whether the
predecessor of the current label satisfies condition (b) of accessibility. In an
analogous way we walk through the chain, checking all labels and saturating
them if needed, but this time we are going in the reverse direction. Let us
note that this travel to the beginning is interrupted every time we make
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a saturation of some label, because in this case again instruction 3. is
repeated which may change the direction of our walk if we find new unused
νF -formulae in currently processed label. In any case we are granted that
this travel up and down the chain must end since C is finite and every σ
is finite too. Only after reaching the first label in C the instruction 5. is
called for. So after every running of EXT(U(D)) we make systematic walk
on all elements of C – from current label to the last, and back again – which
makes sure that:

(a) every label in C is L-downward saturated,
(b) every label is accessible from all its predecessors in C.

Summing up, the application of EXT(U(D)) takes place only if U(D) is
a chain, and the procedure stops only when all π-formulae are marked as
used, hence U(D) must be a fulfilled chain.

In case of monomodal linear logics the algorithm may be simplified, since
we need only the walk in one direction (to the end of a chain). Hence the
part of an algorithm covering instructions starting with 4. is superfluous.
Also the procedure of loop control requires only inclusion of current label
in blocking label, and constructed clusters have stable character.3

10.5.3 Worst Case Analysis

Notice that in our algorithm [LRED] is applied only for missing β-premises
(needed for downward saturation) and for missing premises for 3-rules (to
secure linearity). Hence the use of (analytic) cut is restricted to necessary
cases, instead of blowing up each label until we get a maximal set as was
the case in the proof described in the preceding Chapter or in the proof
based on the technique of mosaics and applied in [183]. But we cannot
eliminate all the applications of cut which may lead to suspection that other
approaches are better. We have shown that our rules may considerably
shorten proofs but we should also consider whether in the worst case our
systematic procedure does not lead to proof-search of higher complexity
than in other systems proposed for logics of linear frames. Fortunatelly, as
far as the branching due to the specific rules for linearity is concerned, we
achieve essentially the same result.

In order to show that at worst our procedure explores the proof-search
space which is of the same complexity as in other systems, it is better to
rephrase its action in terms of tableaux with (analytic) cut. We restrict a

3Cf. respective considerations from the preceding section.
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comparison of our procedure with others, to the case of Rescher/Urquhart
system [231]. It is sufficient since we have established in Chapter 9 that
the system of Rescher/Urquhart eksplores the same proof-search space as
others. Also it is sufficient to pay attention only to these applications of cut
which are connected with the use of 3-rules. We will show that satisfaction
of any π-formula does not require creation of more new branches than in
the case of Rescher/Urquhart system.

Suppose we have an open branch B with some unfulfilled σ : Fϕ and
let τ1, ..., τn be the list of successors of σ in the chain corresponding to the
current open branch. According to the procedure EXT(U(D)) (step 1.2),
first we make a cut with τ1 : ϕ (sub-branch B1) and τ1 : −ϕ (sub-branch
B2); B1 finishes, since Fϕ is satisfied on it in τ1. On B2 by step 1.1.2. we
make a cut with τ1 : Fϕ (sub-branch B2.1) and τ1 : ¬Fϕ (sub-branch B2.2).
Now, on B2.2 we apply (LπE) to σ : Fϕ thus introducing σ.i : ϕ, where σ.i
is new. B2.2 corresponds to a chain with σ.i inserted between σ and τ1 since
for every σ.i : νF (or τ1 : νP ) we have a sufficient set of premises (namely
τ1 : −ϕ, τ1 : ¬Fϕ , σ.i : ϕ) to apply 3-rules and guarantee accessibility of τ1
from σ. So B2.2 also finishes in this respect. On B2.1 we have moved Fϕ
from σ to τ1, so we have to repeat this procedure, first doing cut on τ2 : ϕ
and τ2 : −ϕ and then (on the latter branch) with τ2 : Fϕ and τ2 : ¬Fϕ. One
can easily check that the total number of new branches potentially created
by cuts to all τi on B is 2n+ 1 – the exact number of possible places where
our Fϕ may be satisfied.

Hence, our procedure gives no redundant branches – in the worst case it
works as the system of Rescher and Urquhart. The difference is that in our
procedure we introduce 2n+1 branches through successive binary branching
due to cut, whereas in their system we immediately create 2n+1 branches by
a special rule. Needless to say that in our approach on every stage we may
have an opportunity to decrease the number of further branches if required
formulae are already present in suitable τi (i.e. if conditions 1., 1.1., 1.1.1.
are satisfied).

Cosequently, the system we have proposed is not worse, and in practice
it tends to behave better, than other systems. In particular, let us note that
the algorithm we have stated in this section was not realised in examples of
short proofs from Chapter 9. But we leave the question of optimization of
proof search in our system for linear logics for another day.



Chapter 12

Proof Methods for MHL

The final Chapter covers proof theory of hybrid logics. In contrast to the
rest of the book, where ND performs a priviliged position, we have tried to
present almost all deductive systems constructed so far for hybrid logics and
describe their most interesting features. It follows from the author’s convic-
tion that on the field of investigation on proof methods for modal logics, the
application of hybrid languages instead of standard modal languages may
offer a real breakthrough, so careful analysis is vital.

In the first Section we make an introductory division of existing systems
on some types. In particular, we distinguish sat-calculi operating on sat-
formulae only, as the most popular approach in every group of systems. In
Section 12.2 we describe three variants of sequent calculi: ordinary SC due
to Seligman, sat-calculus of Blackburn, and nonstandard calculus of Demri.
The next Section presents tableau systems: labelled (mixed) calculus of
Tzakova with their refinements due to Bolander, Braüner and Blackburn,
and sat-calculus of Blackburn. Then we present ND systems – a standard
one due to Indrzejczak, and sat-calculus of Braüner. Finally, we introduce
two sat-calculi defined on clauses and based on resolution, namely HyLoRes
due to Areces, and HRND (hybrid RND) being a generalization of RND
system. Other types of systems like refutation systems, connection calculi,
Davis-Putnam method or goal oriented deduction systems, although applied
in nonclassical logics, and in standard modal logic in particular, were not
devised for hybrid logics so far. In each case we will present the basic
system and its main features. In particular, we will focus on the problem of
a uniform extension of the basic system to stronger languages and logics.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 398
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12.1 Kinds of Formalizations of MHL

Before we describe and compare the existing formalizations of hybrid logics
some remarks on the general features of proof systems are in order.

We have already mentioned (in Section 7.5) that for ordinary modal
logic a lot of nonstandard systems were devised, particularly in the area of
sequent calculi. In hybrid logics all these additional techniques are usually
not needed due to the richer abilities of language. Hence proof systems for
hybrid logics are usually based on the standard solutions for ordinary modal
logics but, as we shall see, they often improve them in many respects.

On the other hand, all these systems may be counted as belonging to
one of the nonstandard approaches in constructing proof systems, based on
the use of labels (prefixes). As we have pointed out in Chapter 8, in the
wide sense we may distinguish at least three groups of labelled systems. All
systems presented in Chapters 8, 9, and 10 are based on the external form
of representation of states in a model, whereas hybrid languages represent
the internalised labelling. Thus, if we use the term labelled deduction in its
most general form, then all existing proof systems for hybrid logics belong
to this category.

Internalised labelled systems are the most popular solution for hybrid
logics, but we may find also tableau systems with mixed labelling (nominals
and external labels) – the earliest one due to Tzakova. But even in the group
of internalized systems, where essentially we have a situation of application
of standard proof systems to hybrid logics, it is handy to distinguish an
additional group. There is a group of systems which do not use external
labels but where the rules are defined only on sat-formulae or data structures
(like sequents, clauses e.t.c.) built up only from sat-formulae. Systems
of this sort are strongly similar to calculi with external (strong) labelling.
Although such systems are naturally limited to logics in languages with sat-
operators, within this group of languages they have sufficient generality. It
follows from the admissibility of the rule:

(NAME) � @iϕ / � ϕ if i /∈ ϕ

So, if we want to prove a thesis ϕ which is not a sat-formula we must
try to prove @iϕ with i /∈ ϕ. If we succeed, then, by (NAME) it holds also
for ϕ alone. On the other hand, if we fail, then ϕ is false in V (i) (provided
we deal with some universal system, like TS, where falsification is possible).

The reason to distinguish sat-calculi as a group of its own lies in the fact
that they form the most numerous group of proof systems for hybrid logics.
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Hence, finally we divide proof systems for hybrid logics on three groups:

1. Standard calculi (standard systems with additional rules for hybrid
constants): Seligman’s SC and ND-system of Indrzejczak.

2. Sat-calculi (systems defined on sat-formulae): Blackburn’s TS, Demri’s
SC,1 Braüner’s ND-system, Areces’ HyLoRes resolution system, HRND-
system (RND for hybrid logics) of Indrzejczak.

3. Mixed calculi (systems with external labels): SC of Seligman and TS’s
of Tzakova and of Bolander.

12.2 Sequent Calculi

We start our presentation of proof systems with sequent calculi not only
because they seem to be the most important proof systems applied in proof
theory but also because of chronological reasons. In fact, the first non-
axiomatic systems constructed for hybrid logics were of this type. There
were several versions od SC constructed by Seligman in the early 1990s,
for situation theory (see [248, 249]). These systems deal with languages
without modalities, so we do not describe them in detail, focusing rather
on the system from [251] which extends the earlier results and contains a
formalization of strong modal hybrid logic. But this is not the only SC for
hybrid logics.

In what follows, we will describe three calculi for MHL. Except Selig-
man’s ordinary sequent calculus, we present two nonstandard ones. One of
them, due to Blackburn [32], is an example of a sat-calculus, constructed
rather indirectly, by the transformation of suitable tableau sat-system. Al-
though this SC uses exclusively sat-formulae, it is rather an extension not
a substantial modification of standard Gentzen approach. The second pro-
posal, due to Demri [78], shows more serious departure from ordinary SC
since it is based on sequent version of KE-system.

From the variety of other nonstandard sequent calculi applied for modal
logics like, e.g. hypersequent calculus, only display calculus was used by
Demri and Goré [79], to formalize tense hybrid logic. We do not present
this SC because it would require a prior presentation of principles of display
calculi, and there is no space for that.

1In fact this system is not a sat-calculus in the strict sense. There are no even sat-
operators in the language! But rules are defined only on formulae of the shape i → ϕ,
which naturally put this calculus in this group.



12.2. SEQUENT CALCULI 401

12.2.1 Seligman’s SC

We start with the sequent calculus of Seligman complete for the basic hybrid
logic in LH@ and some stronger languages. It this case we have simply an
extension of ordinary SC with additional rules. So, the first group of rules
is like in the standard SC as defined in Section 3.1.1 with small differences.
Seligman’s rules are defined on ordinary Gentzen sequents Γ ⇒ Δ, where
both Γ,Δ are not sets but finite lists of formulae. In fact, his actual set of
rules is slightly different from original Gentzen’s set either, since there is no
ordinary Gentzen’s structural rules of contraction, permutation and weak-
ening. Instead, he uses (AX) in generalized form (with side formulae) and
a general rule (S) which captures the effect of contraction and permutation.

The second group of rules is dealing with nominals.

Nominal rules

(@I⇒) i, ϕ,Γ⇒ Δ
i, @iϕ, Γ⇒ Δ (⇒@I) i,Γ⇒ Δ, ϕ

i,Γ⇒ Δ, @iϕ

(@E⇒) i, @iϕ,Γ⇒ Δ
i, ϕ, Γ⇒ Δ (⇒@E) i,Γ⇒ Δ, @iϕ

i,Γ⇒ Δ, ϕ

(N1)1 i, j,Γ[i]⇒ Δ[i]
i, j,Γ[j]⇒ Δ[j] (TERM)2 i,Γ⇒ Δ

Γ⇒ Δ (S-NAME)3 i,Γ⇒ Δ
Γ⇒ Δ

Side conditions:

1. where Γ[i] means that i occur in Γ and Γ[j] is the result of replacement
of j for i in Γ
2. where all elements of Γ,Δ are sat-formulae
3. where i does not occur in Γ,Δ.

(N1) is a kind of substitution rule; we substitute j for i at once through
all the sequent.

The last group of rules is defined for modal constants.

Modal rules

(H♦⇒)1 ♦i, @iϕ,Γ⇒ Δ
♦ϕ,Γ⇒ Δ (H ⇒♦) Γ⇒ Δ,♦i Γ⇒ Δ,@iϕ

Γ⇒ Δ,♦ϕ

(H�⇒) Γ⇒ Δ,♦i @iϕ,Γ⇒ Δ
�ϕ,Γ⇒ Δ (H ⇒�)1 ♦i,Γ⇒ Δ,@iϕ

Γ⇒ Δ,�ϕ

Side condition: where i does not occur in Γ,Δ and ϕ.
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This time we’ve added rules for � that are not present in [251], but are
easy to obtain.

Proofs in the system are defined in standard way, as trees of sequents,
constructed by means of the rules, with axioms as leaves and deduced se-
quents as roots. Clearly, proof search is performed in an upside-down man-
ner; we start with the root-sequent and systematically add above sequents-
premises of suitable rules. Below we display an example of a proof (appli-
cations of (S) ignored).

♦j, i⇒ @jp,♦j @jp,♦j, i⇒ @jp

(H� ⇒) �p,♦j, i⇒ @jp

(@I ⇒) i,@i�p,♦j ⇒ @jp

(@I ⇒) i,@i�p,@i♦j ⇒ @jp

(TERM) @i�p,@i♦j ⇒ @jp

(∧ ⇒) @i�p ∧ @i♦j ⇒ @jp

(⇒→) ⇒ @i�p ∧ @i♦j → @jp

The notions of the relation of deducibility between sequents, derivable
and admissible rules, as well, as semantic notions of satisfiability and validity
of a sequent are defined as in Section 3.1.1 for standard SC.

Properties

Let us consider some important features of Seligman’s SC, namely:

• The lack of restrictions on formulae in sequents

• The construction and generality of the hybrid rules

• The presence of elimination rules for nominals and sat-operators

• Admissibility of the cut of the form:

(Cut) Γ⇒ Δ, ϕ ϕ,Γ′⇒ Δ′
Γ,Γ′⇒ Δ,Δ′

By the first, we simply mean that it is an extension of ordinary SC to
hybrid language. All formulae are permitted as elements of sequents which
is the most fundamental difference with sat-calculus of Blackburn which will
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be discussed next.2 Due to this feature, Seligman is able to obtain SC for
hybrid logic just by the addition of new rules to standard SC; no substantial
modification of the classical basis is needed.

Such a modular approach makes easier the comparison of this calculus
with axiomatic system. We can easily prove the following:

Lemma 12.1 If ϕ is a thesis of H-K+
H@, then ⇒ ϕ is derivable in Selig-

man’s SC

We omit the proof; it is sufficient to prove all the axioms and show (with
the help of cut) a derivability of all the rules of H-K+

H@, which is routine.
Nevertheless, the proof of the above lemma may be instructive; one can

find that application of (N1) is not necessary for the proofs of axioms (al-
though it can shorten them). Also the rule (S-NAME) is needed only for
the proof of derivability of (NAME) from axiom system, so if we need SC
equivalent to H-KH@ it is also dispensable. In [248] we have a direct evi-
dence for this redundancy, because completeness proof is provided for SC
formalization of non-modal hybrid language with sat-operators and nomi-
nals. In this case, to ordinary SC with cut only three rules are added, a
version of (TERM) and two @-introduction rules of the form:

(@ ⇒′) Γ⇒ Δ, i ϕ,Γ⇒ Δ
@iϕ,Γ⇒ Δ (⇒ @′) Γ⇒ Δ, i Γ⇒ Δ, ϕ

Γ⇒ Δ,@iϕ

Although these rules are different from the rules described above for @,
it may be shown that they are equivalent in the sense of mutual derivability.
The lack of rules for @-elimination shows that they are also redundant if we
search for a complete system with cut, but they are required for obtaining
a cut-free version. In fact, for stronger languages we need them also in
cut-free proofs, as well as (S-NAME).

Seligman’s rules are very natural. In [251] the rules are obtained by the
series of syntactical transformations, but [249, 250] contains a justification
of them by reference to intuitively plausible patterns of reasoning. We just
comment on the sense of (TERM) and (S-NAME). The former means
that if some sat-formulae follow from other sat-formulae locally (in some
state i), then this entailment holds generally, independently of the state of
evaluation. The latter is justified similarly: if in arbitrary state (new i) we
have local entailment, then it holds generally.

2In fact, Seligman considers in [251] also sat-calculus and mixed calculus as stages in
the series of transformations from SC for first-order logic.
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However, this calculus may seem strange for researchers familiar with
Gentzen approach, since for nominals and sat-operators we have both in-
troduction and elimination rules. It is not a standard solution in SC, where
constants are usually characterised by introduction rules only. Also some
other of the Seligman’s rules lack several properties required from “good”
sequent calculi (see e.g. the properties discussed by Avron or Wansing [280],
like the lack of symmetry for nominal rules). Despite these drawbacks, Selig-
man’s system presents quite good behaviour. In particular, cut-elimination
theorem holds for this calculus. The proof of this fact is not performed
directly for this form of SC, but for the form of SC adequate for first-order
logic. For this SC the admissibility of cut is proved in the standard way by
induction on the rank and the degree of cut applications. Seligman then
obtains his calculus for hybrid logic by the series of transformations from
this origin-SC. These transformations preserve many important properties,
among them cut admissibility. Direct proofs of cut-elimination for SC with-
out modals may be found in [248, 250].

From the point of view of practical utility, as a tool for proof-search,
Seligman’s system has some drawbacks however, connected with the lack of
analyticity. Of course, cut is admissible, but cut-elimination is not in it-
self the sufficient condition for obtaining practically useful system for proof-
search. One can easily note that in Seligman’s SC cut is not the only nonde-
terministic rule. Because of (TERM), (S-NAME) and two @-elimination
rules, cut-free Seligman’s system does not satisfy subformula property. It
is interesting to note, that the version of SC for nonmodal logic from [250]
satisfies some generalised form of subformula property, namely:

Every formula occuring in the derivation of Γ ⇒ Δ is a quasi-subformula
of elements in Σ = Γ∪Δ∪N , where N is a finite set of nominals and ϕ is a
quasi-subformula of Σ iff either ϕ is an ordinary subformula of some ψ ∈ Σ
or ϕ := @iψ and both i and ψ are subformulae of some formulae in Σ.

But in this form of SC both rules for @-elimination additionaly satisfy
side conditions to the effect, that ϕ in eliminated @iϕ, is not itself sat-
formula.

Such a property makes possible to define proof-search procedure and to
redefine SC system for Hintikka-style tableau calculus by simply turning
upside down all the rules and change all sequents Γ ⇒ Δ into sets Γ,¬Δ
like in ordinary modal logic (in fact, some modifications of rules (H ⇒ ♦)
and (H� ⇒) are also necessary – cf. the next Section). But it is not clear if
a similar form of subformula property may be obtained for considered SC.
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Other properties of Seligman’s SC are responsible for the fact that we
cannot define on the basis of this system any sort of tableau system operat-
ing on formulae (like Smullyan’s system for classical logic). It is impossible,
or at least very difficult, because of the global character of rules for sat-
operators and nominal rules described in respective side-conditions. For
example, (N1) is a rule difficult to simulate in a proof system where proof
consists of single formulae as basic items, because an application of such a
rule requires performing a global transformation on actual proof. In systems
like ND or Smullyan’s tableau, more natural solution is to use some kind of
rewrite rules that operate locally. We will return to this question later. A
simulation of rules like (TERM), (S-NAME) and rules for sat-operators in
tableau system would demand a presence of some nominal as a context for
the whole branch, which is possible but rather an artificial solution in such
systems.

Also the transfer of these rules into the context of ND systems may be
difficult in some respect. For example, one can show that in ordinary modal
logic, the rules of Ohnishi/Matsumoto SC have natural ND-counterparts in
Fitch’s style system. One can ask if such a transfer is possible with respect
to Seligman’s rules. We will focus on this problem in the section devoted
to ND-systems.

Extensions

In fact, Seligman’s system is stronger than the reduct we’ve discussed. This
is a consequence of the mode of its construction, namely by the transfor-
mation of SC for first-order logic. The final calculus contains also rules for
↓, E ,∃.

(↓⇒) i, ϕ[u/i],Γ⇒ Δ
i, ↓uϕ, Γ⇒ Δ (⇒↓) i,Γ⇒ Δ, ϕ[u/i]

i,Γ⇒ Δ, ↓uϕ

(E⇒)1 @iϕ,Γ⇒ Δ
Eϕ,Γ⇒ Δ (⇒E) Γ⇒ Δ,@iϕ

Γ⇒ Δ, Eϕ

(H∃⇒)1 ϕ[u/i],Γ⇒ Δ
∃uϕ,Γ⇒ Δ (H ⇒∃) Γ⇒ Δ, ϕ[u/i]

Γ⇒ Δ,∃uϕ

Side condition: 1. where i does not occur in Γ,Δ and ϕ.

Since the system is modular, by combining these rules over the ba-
sic system we can obtain adequate formalizations of basic hybrid logics in
these languages. Seligman does not consider any extension of his system to
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stronger modal logics than K. The fact that it is not sat-calculus opens the
problem if this system may be modified for logics in languages without sat-
operators. But it is not so obvious how to obtain a system complete (and
cut-free) for KH. It is not enough to get rid of 4 rules for sat-operators,
since @ is present also in the rules for modals (they do not satisfy properties
of separation and explicitness, see [280]) – different rules are necessary. Tza-
kova defined a tableau system for logics without sat-operators which may
be transformed into cut-free SC, but it applies also external labels (cf. the
section on tableau calculi).

12.2.2 Sequent Sat-Calculus of Blackburn

As we mentioned earlier, Blackburn’s system is defined on sat-formulae only,
so, in a sense, we have a nonstandard form of SC. On the other hand, the
form of rules is quite close to standard Gentzen’s format as we shall see. All
the definitions concerning proof, derivable and admissible rules e.t.c. are
the same as for Seligman’s SC.

General rules

(@AX) Γ ⇒ Δ, where Γ ∩ Δ �= ∅

(@C ⇒) @iϕ,@iϕ,Γ⇒ Δ
@iϕ,Γ⇒ Δ (@ ⇒ C) Γ⇒ Δ,@iϕ,@iϕ

Γ⇒ Δ,@iϕ

(@¬⇒) Γ⇒ Δ,@iϕ
@i¬ϕ,Γ⇒ Δ (@ ⇒¬) @iϕ,Γ⇒ Δ

Γ⇒ Δ,@i¬ϕ

(@∧⇒) @iϕ,@iψ,Γ⇒ Δ
@i(ϕ∧ψ),Γ⇒ Δ (@ ⇒∧) Γ⇒ Δ,@iϕ Γ⇒ Δ,@iψ

Γ⇒ Δ,@i(ϕ∧ψ)

(@∨⇒) @iϕ,Γ⇒ Δ @iψ,Γ⇒ Δ
@i(ϕ∨ψ),Γ⇒ Δ (@ ⇒∨) Γ⇒ Δ,@iϕ,@iψ

Γ⇒ Δ,@i(ϕ∨ψ)

(@ →⇒) Γ⇒ Δ,@iϕ @iψ,Γ⇒ Δ
@i(ϕ→ψ),Γ⇒ Δ (@ ⇒→) @iϕ,Γ⇒ Δ,@iψ

Γ⇒ Δ,@i(ϕ→ψ)

Rules are defined on sequents Γ ⇒ Δ, where both Γ,Δ are finite multi-
sets of sat-formulae. This is why Blackburn needs structural rules of con-
traction ((@C ⇒) and (@ ⇒ C)). In fact, he uses axioms of the form:
@iϕ⇒ @iϕ and in consequence he needs also rules of weakening.
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Modal rules

(@ ⇒) @iϕ,Γ⇒ Δ
@j@iϕ, Γ⇒ Δ (⇒ @) Γ⇒ Δ,@iϕ

Γ⇒ Δ, @j@iϕ

(@♦⇒)1 @i♦j, @jϕ,Γ⇒ Δ
@i♦ϕ,Γ⇒ Δ (@ ⇒♦) Γ⇒ Δ,@jϕ

@i♦j, Γ⇒ Δ,@i♦ϕ

(@�⇒) @jϕ,Γ⇒ Δ
@i�ϕ,@i♦j,Γ⇒ Δ (@ ⇒�)1 @i♦j,Γ⇒ Δ,@jϕ

Γ⇒ Δ,@i�ϕ

Side condition: 1. where j does not occur in Γ ∪ Δ ∪ {ϕ}.

Special rules

(@Ref) @ii,Γ⇒ Δ
Γ⇒ Δ (@Sym) @ij,Γ⇒ Δ

@ji,Γ⇒ Δ

(@Nom) @iϕ, Γ⇒ Δ
@ij,@jϕ,Γ⇒ Δ (@Bridge) @i♦j,Γ⇒ Δ

@i♦k,@kj, Γ⇒ Δ

In fact, both (@Sym) and (@Bridge) are derivable with the help of cut.
Below we display a proof of the derivability of (@Sym):

@jj ⇒ @jj (@AX)
@jj,@j¬j ⇒ (@¬ ⇒)

@ij,Γ ⇒ Δ @j¬j ⇒ (@Ref)
(@ ⇒ ¬) Γ ⇒ Δ,@i¬j @ji,@i¬j ⇒ (@Nom)
(Cut) @ji,Γ ⇒ Δ

Blackburn’s sat-SC is also cut-free but this fact is not proved construc-
tively but rather shown indirectly. The calculus is obtained from cut-free
tableau system (see the Section on tableau calculi) for which Hintikka style
constructive completeness proof is provided (by constructing suitably de-
fined downward-saturated sets from open branches).

It is instructive to compare this calculus with previously presented SC
of Seligman. One can easily notice that rules of Blackburn differ from those
of Seligman not only with respect to the kind of formulae they use. In fact,
Seligman obtains also sat-calculus as one of the stages in the process of
transformations leading to SC described in the previous paragraph. So our
comparison will be more direct if we refer to this sat-calculus of Seligman,
instead of the final form of his SC.
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The fact that sequents in Blackburn SC are defined on multisets is not
essential, we can define this SC also on sequents made of lists of sat-formulae
and just add rules of permutation. More serious differences concern some
rules:

• for (@ ⇒ ♦) and (@� ⇒)

• forms of (@Ref)

• nominal rules

Seligman’s rules for modalities look as follows:

(H ⇒♦′) Γ⇒ Δ,@i♦j Γ⇒ Δ,@jϕ
Γ⇒ Δ,@i♦ϕ (H�⇒′) Γ⇒ Δ,@i♦j @jϕ,Γ⇒ Δ

@i�ϕ,Γ⇒ Δ

They are interderivable (i.e. mutually derivable) with Blackburn’s rules
which may be shown by referring to Lemma 3.1. Seligman’s variants are
better from the proof-theoretical perspective, but Blackburn’s rules are bet-
ter if we need a calculus for actual proof-search. In such a case it is handy
to redefine the calculus in terms of sequents built up from sets of formu-
lae, but two respective rules must be changed in order to keep the effect of
contraction:

(@ ⇒♦′) @j♦i,Γ⇒ Δ,@j♦ϕ,@iϕ
@j♦i, Γ⇒ Δ,@j♦ϕ (@�⇒′) @iϕ,@j�ϕ,@j♦i,Γ⇒ Δ

@j�ϕ,@j♦i,Γ⇒ Δ

Seligman’s sat calculus makes use of one more axiom (R@) of the form:
Γ ⇒ Δ,@ii instead of Blackburn’s rule (@Ref). They are also interderiv-
able.

Finally, note that Blackburn’s SC in addition to (@Ref) has three addi-
tional special rules, whereas Seligman’s system uses only one pair of rules:

(@L1) @ij,Γ[i]⇒ Δ[i]
@ij,Γ[j]⇒ Δ[j] (@L2) @ij,Γ[j]⇒ Δ[j]

@ij,Γ[i]⇒ Δ[i]

where Γ[i] means that i occur in Γ and Γ[j] is the result of replacement
of j for i in Γ

This pair of rules is contracted in one – (N1) in the final calculus, since
@ij is replaced by a pair of nominals i, j. One can check that three rules of
Blackburn are derivable in Seligman’s version and that his substitution rules
are admissible in Blackburn’s SC (which needs more complicated proof). If
we use Seligman’s substitution rules we can often obtain shorter proofs than



12.2. SEQUENT CALCULI 409

in Blackburn’s version. It is because of the global character of their appli-
cation. On the other hand, local rewrite rules, like these in Blackburn’s
version, may be naturally applied in ND systems or tableau systems de-
fined on formulae. In fact – as we remarked above – Blackburn obtains his
SC from such tableau system which explains why he prefers local rules as
primitives.

Neither Seligman nor Blackburn consider extensions to stronger logics.
Blackburn’s general proposal for tableau sat-calculus will be described in the
next section. We return to this question also in the section on ND by the way
of presenting a system of Braüner. On the basis of his ND-system Braüner
presents yet another variant of sat SC-calculus of a uniform character with
very general and strong rule covering all logics characterized by geometric
theories. For the time being we just note that on the basis of Blackburn
SC we may formalize all logics characterized by universal implications. It
may be done by translation of the general rule of Negri [194] which was
mentioned in Secton 9.1. Very briefly, for each universal implication of the
form ∀x1...xi(ϕ1∧...∧ϕk → ψ1∨...∨ψn), where all ϕ’s and ψ’s are relational
formulae, the general schema of SC rule is:

(HR-UI)
ψ′

1, ϕ
′
1, ..., ϕ

′
k,Γ ⇒ Δ |, ..., | ψ′

n, ϕ
′
1, ..., ϕ

′
k,Γ ⇒ Δ

ϕ′
1, ..., ϕ

′
k,Γ ⇒ Δ

where each ϕ′
i (and ψ′

i) is HT (ϕi) (cf. the definition of HT -translation in
the preceding Chapter.).

12.2.3 Nonstandard Sequent Calculi

As we have mentioned in Chapter 7, there is a lot of nonstandard sequent
calculi for ordinary modal logic, substantially enriching and modifying orig-
inal Gentzen ideas (see [280, 281] for an overview). In contrast, the number
of nonstandard sequent calculi for hybrid modal logic is poor. Sat-calculus
of Blackburn, although nonstandard, represents rather small departure from
the original Gentzen’s approach. It is perhaps due to the fact that hybrid
languages are more expressive, and all this metalogical apparatus applied
in nonstandard calculi to deal with the limitations of ordinary languages, is
indeed of no use.

Anyway, one should note that two really nonstandard calculi were de-
vised. One of them, due to Goré and Demri [79], belongs to the familly
of display calculi, so we are not going to describe it here, because such a
presentation would require an introduction of too many technical details.
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So we only point out that [79] contains display calculus for hybrid tense
logic with difference modality. One can find a good exposition of display
calculi for modal logics in Wansing [280].

The second system, due to Demri [78], is the calculus for KtH and a huge
class of its extensions. Because in this case the departures from standard
SC are not so great we describe briefly its main distinctive features.

1. The calculus is based on the idea of using “implicit prefixes” applied
by Konikowska [164]. This role is played by nominals. Since sat-operators
are not present in the language, all the rules are defined on the formulae of
the shape i → ϕ. It means that even the rules for boolean constants must
be suitably transformed. For instance, standard (⇒→) obtains a form:

(D ⇒→) i→ ϕ,Γ⇒ Δ, i→ ψ
Γ⇒ Δ, i→ (ϕ→ψ)

Similarly for other rules. So i→ plays the role of @i in sat-calculi, and
that’s why we put Demri’s system in the class of sat-calculi in our taxonomy
of proof systems. Demri’s solution shows how to dispense with sat-operators
in the presence of backward-looking modalities. The transmission between
such formulae and ordinary hybrid formulae we want to prove, is realized
by the rule:

(Start) ⇒ i→ ϕ
⇒ ϕ where i /∈ ϕ

This is clearly a sequent version of (NAME′) discussed on the ground
of axiomatic formulations. This rule is applied only once in a proof – its
place is just at the root of the proof-tree.

2. In order to reduce branching, Demri based his calculus on tableau-
like system KE of D’Agostino and Mondadori [2] (cf. Chapter 3). Sequent
counterparts of nonbranching β-rules, e.g. for negated conjunction, are
realized in the following form:

(D⇒∧1) Γ, i→ ϕ⇒ Δ, i→ ψ
Γ, i→ ϕ⇒ Δ, i→ ϕ ∧ ψ (D⇒∧2) Γ, i→ ψ ⇒ Δ, i→ ϕ

Γ, i→ ψ ⇒ Δ, i→ ϕ ∧ ψ

Note that i→ ϕ (i→ ψ) from the antecedent of the conclusion-sequent
must be still present in the premise-sequent, otherwise the calculus would
be incomplete (it may be used more than once in the course of proof-search).
Similar pairs of one-premise rules for → and ∨ must be introduced instead
of ordinary two-premise rules (∨ ⇒) and (→⇒).
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3. This SC is incomplete without cut, similarly as KE, but since cut
without restriction on its applicability makes the calculus practically use-
less, it raises the question of convenient delimitation of its applications. We
recall that in ordinary KE for CPL it is sufficient to use cut only for in-
troducing lacking minor premises (and their negations) for nonbranching
β-rules. Demri’s system also satisfies some restrictions on the applicability
of cut, namely, a cut-formula i→ ψ introduced in the proof of ϕ must obey
the following:

• i is a nominal which was introduced as “new” by the application of
rules that satisfy suitable side-condition

• ψ is either a subformula of ϕ, or j introduced as “new”, or has a form
G¬j with j introduced as “new”

The shape of all rules and some more restrictions put on their applica-
tions make this calculus satisfy 3 conditions which give it almost an analytic
character. However Demri himself is sceptical with respect to usefulness of
this calculus in the field of automated deduction, he is rather concerned
with defining a uniform complete framework.

4. The number of rules for nominals and temporal constants is rather
numerous (and redundant), so we display below only 4 central rules for G
and H:

(DG⇒) Γ, i→ Gϕ, j → ϕ⇒ Δ, i→ G¬j
Γ, i→ Gϕ⇒ Δ, i→ G¬j (D⇒G) Γ⇒ Δ, j → ϕ, i→ G¬j

Γ⇒ Δ, i→ Gϕ

(DH⇒) Γ, j → Hϕ, i→ ϕ⇒ Δ, i→ G¬j
Γ, j → Hϕ⇒ Δ, i→ G¬j (D⇒H) Γ⇒ Δ, j → ϕ, j → G¬i

Γ⇒ Δ, i→ Hϕ

Clearly, in (D ⇒ G) and (D ⇒ H), j does not occur in the conclusion
sequent (this is the proviso concerning “new” nominals when rules are read
off from bottom to top). One can easily note that in these rules, formulae
of the form i→ G¬j in the succedent of a sequent just inform that j is after
i in the flow of time. Similarly, in many other rules, formulae of the form
i → j in the antecedent identify points i and j, whereas in the succedent
they serve as an information on their inequality. Interested reader should
consult [78] for the exposition of the whole calculus.

5. The last thing of great importance is the definition of the schema
of one more (multi-) branching rule which covers a huge class of first-order
frame defining conditions. We omit the details because of their complexity
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and the lack of space, but in the section on ND we briefly comment on the
scope of this extension.

12.3 Tableau Systems

There are two groups of different tableau systems for MHL. The first one has
a mixed character, i.e. except nominals it applies extra metalinguistic labels
called (after Fitting) prefixes. This solution is due to Tzakova [277] and was
recently refined and improved by Bolander, Braüner and Blackburn [44, 45]3;
a similar kind of TS was devised also by van Eijck [83]. The expressive
strength of hybrid languages may suggest that the application of external
labels is of no use in hybrid logics. This is not the whole truth however, at
least if we are concerned with hybrid logics without sat-operators.

The second group contains a sat-calculus due to Blacburn [32] and its
modifications from [44, 45]. It is TS-counterpart of sat-SC presented in
the preceding Section. In fact, tableau calculus was presented as primary
system in [32], then SC was extracted from them.

In both groups all the proposed systems are of Smullyan’s type, i.e. with
nodes of a tableau being single formulae not sets of formulae like in Hintikka
style tableau calculi.4 The definition of a tableau for ϕ in both systems is
standard; it is a tree of formulae with ϕ (with a prefix in Tzakova’s system)
as the root (on the top) which is expanded by expansion rules, typically
decomposing formulae on its parts. A tableau is closed if all its branches
are closed. �T ϕ iff there is a closed tableau for ¬ϕ (again with a prefix in
Tzakova’s system – see below). Additionaly, we will show how to simulate
very powerfull and uniform, strongly labelled TS of Baldoni [18], on the
basis of Blackburn’s sat-calculus.

12.3.1 Mixed Calculi

Tzakova’s system is the first TS constructed for hybrid logics. As we men-
tioned above it is a labelled system of mixed character with extra prefixes
added to formulae. Labels are exactly as in Fitting’s system so we continue
to use σ, τ for denoting them and σ : ϕ to denote a labelled formula. But it
is not just one more system with medium labelling since it contains elements
of strong labelling as well. Tzakova uses two types of formulae:

3I would like to thank anonymous referee for drawing my attention to these valuable
papers.

4Although [44] contains a reformulation of van Eijck’s TS in terms of Hintikka format.
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• labelled sentences of the form σ : ϕ, where ϕ is a hybrid formula and
σ is a label

• accessibility sentences of the form σ < τ , where both σ and τ are
labels

We say that τ is accessible from σ if either τ = σ.i or σ < τ is on the branch.
Hence, a proof of ϕ in Tzakova’s system is a closed tableau for 1 : ¬ϕ built
up by means of the following rules:

The rules for the weakest logic KH:

(T⊥1) σ : ϕ, σ : ¬ϕ / ⊥
(T⊥2) σ : i, τ : i, σ : ϕ, τ : ¬ϕ / ⊥
(T¬¬) σ : ¬¬ϕ / σ : ϕ
(Tα) σ : α / σ : α1, σ : α2

(Tβ) σ : β / σ : β1 | σ : β2

(T�E) σ : �ϕ / τ : ϕ, for any τ accessible from σ
(T¬�E) σ : ¬�ϕ / τ : ¬ϕ, where τ is a new label accessible from σ
(T♦E) σ : ♦ϕ / τ : ϕ, where τ is a new label accessible from σ
(T¬♦E) σ : ¬♦ϕ / τ : ϕ, for any τ accessible from σ
(Lab) σ : ϕ / σ : i, where i is a new nominal
(S-Id) σ : i, τ : i / σ < σ′, provided σ′ is accessible from τ
(L-Id) σ : i, τ : i, σ′ : j, τ : j / σ : j, σ′ : i

Note that there are two rules for closing branches. One of them is
standard, whereas the other reflects identity of labels by two additional
premises (σ : i and τ : i). A similar situation is present in case of (S-Id)
and (L-Id). Tzakova provided also rules for @, ↓ and ∀:

(T@) σ : @iϕ / τ : i, τ : ϕ
(T¬@) σ : ¬@iϕ / τ : i, τ : ¬ϕ
(T ↓) σ :↓uϕ, σ : i / σ : ϕ[u/i]
(T¬ ↓) σ : ¬ ↓uϕ, σ : i / σ : ¬ϕ[u/i]
(T∀) σ : ∀uϕ / σ : ϕ[u/i]
(T¬∀) σ : ¬∀uϕ / σ : ¬ϕ[u/i], where i is a new nominal

In both rules for @, if τ : i is already present on the branch, we just add
the second conclusion of a rule, otherwise τ is a new label on the branch.

The system of Tzakova is weakly complete for KH,KH@,KH↓,KH@↓,
KH∀ and KH@∀. There are no rules for stronger logics but they can be
obtained by adding labelled rules from Chapter 8. The proof of completeness
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is via construction of suitable downward saturated sets but it does not yield
a decision procedure for KH and KH@ which are decidable logics. Problems
with loop generation may be avoided, if we change (S-Id) into the following
rules:

(S-Id′) σ : i, τ : i, σ : �ϕ / σ′ : ϕ, provided σ′ is accessible from τ
(S-Id′′) σ : i, τ : i, σ : ¬♦ϕ / σ′ : ¬ϕ, provided σ′ is accessible

from τ

The reproduced proof of ♦(i ∧ �(j → p)) → ¬♦(i ∧ ♦(j ∧ ¬p)) shows
well the application of rules, including (S-Id):

1 1 : ¬(♦(i ∧ �(j → p)) → ¬♦(i ∧ ♦(j ∧ ¬p)))
2 1 : ♦(i ∧ �(j → p)) (1, Tα)
3 1 : ¬¬♦(i ∧ ♦(j ∧ ¬p)) (1, Tα)
4 1.1 : i ∧ �(j → p) (2, T♦E)
5 1.1 : i (4, Tα)
6 1.1 : �(j → p) (4, Tα)
7 1 : ♦(i ∧ ♦(j ∧ ¬p)) (3, T¬¬)
8 1.2 : i ∧ ♦(j ∧ ¬p) (7, T♦E)
9 1.2 : i (8, Tα)
10 1.2 : ♦(j ∧ ¬p) (8, Tα)
11 1.2.1 : j ∧ ¬p (10, T♦E)
12 1.2.1 : j (11, Tα)
13 1.2.1 : ¬p (11, Tα)
14 1.1 < 1.2.1 (5, 9, S-Id)
15 1.2.1 : j → p (6, 14, T�E)
16 1.2.1 : ¬j | 1.2.1 : p (15, Tβ)
17 ⊥ (16, 12,⊥1) | ⊥ (16, 13, T⊥1)

Since Tzakova uses Fitting’s prefixes it is natural to consider if accessi-
bility sentences are really needed. In standard Fitting’s tableau system for
modal logics, the construction of labels gives all the required information
necessary for extraction of a falsifying model from open branch. But in hy-
brid logic there is an interplay between labels and nominals. The latter give
additional information about links between states in attempted falsifying
model. Note that (S-Id) is the only rule that enters accessibility sentences
as nodes of a tableau. In all other rules having provisos concerning acces-
sibility between labels, the presence of such sentences on a branch is not
necessary for application since all the required information is implicit in the
shape of prefixes. When (S-Id) is applied, such accessibility sentences ap-
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pear in a tableau and may be used as actual second premise for application
of (T�E), (T¬♦E) or (S-Id). Since the presence of accessibility sentences
is necessary for hybrid logics, it would be in fact simpler and more elegant
to formulate this system with the help of strong labelling (cf. [99] or [21])
using just natural numbers (or any other symbols) as labels and accessibility
sentences as the only explicit source of information about the structure of
attempted falsifying model. Obviously, in such a variant we must change a
formulation of some rules:

(T�E′) σ < τ, σ : �ϕ / τ : ϕ
(T¬�E′) σ : ¬�ϕ / σ < τ, τ : ¬ϕ, where τ is a new label
(T♦E′) σ : ♦ϕ / σ < τ, τ : ϕ, where τ is a new label
(T¬♦E′) σ < τ, σ : ¬♦ϕ / τ : ϕ
(S-Id′) σ : i, τ : i, τ < σ′ / σ < σ′

In fact, Bolander and Braüner [44] provided an improvement of Tza-
kova’s system along these lines. There are three points worth noting in the
context of their work:

1. replacement of Fitting’s labels by strong labelling

2. simplification of rules

3. providing decision procedures for considered logics

The first point was discussed above. But changes in the set of rules are
not only the consequence of changes in the type of labelling. They follow
also from the fact that Tzakova’s termination proof for decidable logics is
flawed. [44] contains a system for KH@A, where Tzakova’s rules for modal
constants are replaced with the variants described above. Moreover, (Lab)
and (T⊥2) are deleted and two Id-rules are replaced by one:

(Id) σ : i, σ : ϕ, τ : i / τ : ϕ

The rules for @ are like in Tzakova’s system but both with the proviso
that τ in the conclusion is new. The same proviso is added to one additional
rule which is not necessary but introduced for simplification of completeness
proof:

(T¬) σ : ¬i / τ : i

The system contains also two rules for global modality (only for E – dual
rules for A are straightforward):
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(EE) σ : Eϕ / τ : ϕ, provided τ is new
(¬EE) σ : ¬Eϕ / σ′ : ¬ϕ, provided σ′ is already on the branch

Further improvements of this approach are provided by Bolander and
Blackburn in [45] which contains complete formalizations and decision pro-
cedures for multimodal versions of: KH,KH@,KH@A and KH@A with con-
verse modalities (this include KBH@A, as well as KtH@A, due to admitted
multimodality5). The set of rules is essentially the same as in [44] (with
minor difference that accessibility sentences are now written as σ♦iτ), it is
shown however, that small changes in the set of rules may improve decision
procedure in some cases. If in KH and KH@ we replace (Id) with two more
constrained rules:

(νId) σ : ϕ, σ : i, τ : i / τ : ϕ,
where τ is the earliest label with i on the branch

(TNom) σ : i, σ : j, τ : j / τ : i

then proof-search procedure does not involve loop-check. In the remaining
systems some kind of loop-check is necessary to provide termination.

It is important to note that labelled TS’s of this sort are the only non-
axiomatic formalizations of hybrid logics without sat-operators. In fact, it
is exactly the lack of internalized sat-operators in a language, which makes
sense to consider external labels in addition to nominals. It was also believed
that mixed systems represent better behaviour with respect to proof-search
but [45] shows that it is not necessarily the case.

One should note that not all rules in this approach are typical expansion
rules of tableau calculi. For example, (S-Id), (L-Id) or (Id) and both rules
for ↓ or (T�E′), (T¬♦E′) have more than one premise, so their application
requires scanning of all the branch above to find the additional premises.
It makes them more similar to KE or ND in defining suitable proof-search
procedures (cf. a discussion in Chapter 10). The same remark applies also
to some rules in Blackburn’s sat-system discussed below.

12.3.2 Blackburn’s Sat-Calculi

We still use α−, β−notation but in a slightly modified form represented
in the table. Such reformulation is needed for a uniform representation of
rules, because tableau calculus of Blackburn is defined on all sat-formulae
including negated forms, in contrast to his SC or Braüner’s ND-system

5In fact, the approach represented in [45] is even more general because modal constants
of any arity are considered, as well as their converse modalities wrt. every argument.
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where there is no negation. A proof of ϕ is a closed tableau for ¬@iϕ,
where i is not in ϕ.

α α1 α2 β β1 β2

@i(ϕ ∧ ψ) @iϕ @iψ ¬@i(ϕ ∧ ψ) ¬@iϕ ¬@iψ
¬@i(ϕ ∨ ψ) ¬@iϕ ¬@iψ @i(ϕ ∨ ψ) @iϕ @iψ
¬@i(ϕ→ ψ) @iϕ ¬@iψ @i(ϕ→ ψ) ¬@iϕ @iψ

Rules for KH@

1. Sat-versions of classical expansion rules:

(B¬) @i¬ϕ / ¬@iϕ
(B¬¬) ¬@i¬ϕ / @iϕ
(B⊥) @iϕ, ¬@iϕ / ⊥
(Bα) α / α1, α2

(Bβ) β / β1 | β2

2. Modal and nominal expansion rules:

(B@E) @j@iϕ / @iϕ
(B¬@E) ¬@j@iϕ / ¬@iϕ
(BRef) ∅ / @ii, provided i is on the branch
(BSym) @ij / @ji
(BNom) @ij, @jϕ / @iϕ
(BBridge) @ij, @k♦i / @k♦j
(B�E) @i�ϕ, @i♦j / @jϕ
(B¬�E) ¬@i�ϕ / @i♦j, ¬@jϕ, j new on the branch
(B♦E) @i♦ϕ / @i♦j, @jϕ, j new on the branch
(B¬♦E) ¬@i♦ϕ, @i♦j / ¬@jϕ

Blackburn provides also rules for ↓:

(B ↓ E) @i ↓uϕ / @iϕ[u/i]
(B¬ ↓ E) ¬@i ↓uϕ / ¬@iϕ[u/i]

One can easily check that this calculus is in exact one-to-one correspon-
dence with the earlier described SC. Blackburn considers also its variant for
the basic tense hybrid logic KtH@. We replace 4 rules for modalities by 8
rules for F, P instead of ♦ and G,H instead of �; also (BBridge) must be
doubled for F and P . Additionaly we need rules:
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(Transpose-P ) @iPj / @jFi
(Transpose-F ) @iFj / @jPi

Again, it is easy to observe that the rules like (BSym), (BNom), (BBridge),
as well as (BRef) are not of a kind characteristic for tableau systems (also
two rules for modal operators: (B�E) and (B¬♦E) are of different kind,
like in ND-system). In fact, we have a set of rewrite rules added to stan-
dard expansion rules. These rules seem to be necessary to handle the theory
of equality of nominals but in fact, numerous reductions are possible. We
have already remarked that (BSym) is redundant but further investigations
have shown that at least some of them are not. In [44] a decision proce-
dure is provided for KH@A, where instead of one unrestricted (BNom) and
(BBridge) there are two more specific ones:

(BNom1) @ij, @iϕ / @jϕ
(BNom2) @ij, @j♦k / @i♦k

Clearly, two rules for E are also provided:

(BEE) @iEϕ / @jϕ, provided j is new
(B¬EE) ¬@iEϕ / ¬@jϕ, provided j is already on the branch

The restriction to KH@A yields even simpler calculus. In [45], all rules
like (BRef), (BSym), (BNom), (BBridge) are dispensed with, and the only
rule of this kind is:

(BId) @ij, @iϕ / @jϕ

with a constraint that none of the premises are accessibility sentences, i.e.
formulae of the shape @i♦j introduced on the branch as the first conclusion
of an application of (B♦E) or (B¬�E). Such a system is not only simpler
in the sense of the set of primitive rules but also in the sense of simpler
proof-search since no loop-test is needed.

It must be said that in the context of internalised TS also the question
of extension to logics stronger than K was undertaken. In [32], Blackburn
considered only extensions to stronger logics obtained by the addition of
pure axioms. For such calculi he proved strong completeness theorem by
Hintikka method, using downward saturated sets. In [40] there is a con-
siderable extension provided by the use of so-called node creating rules.
These rules were already mentioned in the preceding Chapter in connection
with PUENF-formulae; they are tableau counterparts of existential satu-
rated rules. Theorem 11.13 concerning existential saturated rules defined
for axiomatic systems may be restated:
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Theorem 12.1 Every PUENF-formula (PF) ∀u1, ..., um∃v1, ..., vnϕ corre-
sponds to the node creating rule (NCR) of the form:

∅ / ϕ[u1/i1, ..., um/im, v1/j1, ..., vn/jn],

provided i1, ..., im occur on the branch, j1, ..., jn are distinct, unequal to
i1, ..., im and do not occur on the branch

Strong completeness theorem for tableau system with (NCR)-rules holds
with respect to every class of frames defined by respective PUENF-formulae.
The drawback of such a solution lies in the shape of these rules. Instead of
expansion rules we must use in fact, special instances of suitable axioms. In
many respects these may be replaced by tableau-like rules. For example, to
every property defined by Geach Axiom there corresponds the rule covered
by the following schema:

(@GR) @i♦i1,@i1♦i2, ....,@im−1♦im,@i♦j1,@j1♦j2, ....,@js−1♦@js /
@im♦k1,@k1♦@k2 , ....,@kn−1♦@m,@js♦l1,@l1♦@l2 , ....,@lt−1♦@m,

where, k1, ..., kn−1, l1, ..., lt−1,m, are new nominals.

In order to understand the sense of this rather complicated schema one
should recognize, that i is the denotation of x, im of y, js of z and m of
v in Condition (5.7) stated in Section 5.4.3. For example, Church-Rosser
property is defined by the rule:

(@CR) @i1♦i2,@i1♦i3 / @i2♦j,@i3♦j, where j is new

In [36], there is a tableau formalization of QMHL presented in the
preceding Chapter. To the set of rules for KH@↓ one should add:

(@∀E) @s∀xϕ / @sϕ[x/τ ], where τ is any grounded term
(@¬∀E) ¬@s∀xϕ / ¬@sϕ[x/c], where c is a new parameter
(@∃E) @s∃xϕ / @sϕ[x/c], where c is a new parameter
(@¬∃E) ¬@s∃xϕ / ¬@sϕ[x/τ ], where τ is any grounded term
(ID) ∅ / τ = τ
(LR) τ1 = τ2, ϕ / ϕ[τ1//τ2]
(@DD) @s1s2 / @s1f = @s2f
(@ =) @s(τ1 = τ2) / τ1 = τ2
(@¬ =) ¬@s(τ1 = τ2) / ¬(τ1 = τ2)
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Where s is a nominal or a state variable and a term is grounded if it
is a constant (rigid), a parameter or rigidified term (i.e. @if). Rules for
quantifiers are classical since these are possibilistic quantifiers. The last
two rules state that equality is rigid and make possible to keep standard
rules (ID) and (LR) (not the sat-versions!) since they delete sat-operators.
The system is proved complete by translation of every tableau into tableau
calculus of the corresponding first-order logic.

Although the tableau system of Blackburn was designed rather for doing
refutations by hand, not for automated deduction, one can find an imple-
mentation of it, called Hydra, accessible on hybrid web page.

12.3.3 Hybrid Simulation of Baldoni’s Strongly Labelled TS

In order to obtain an extensive and uniform formalizations one may also
take advantage of solutions obtained for strongly labelled systems. We have
already illustrated such a possibility in the preceding section, by providing
a hybrid counterpart of Negri’s rule for universal implications. In Chapters
8 and 9 we have mentioned Baldoni’s strongly labelled TS from [18] which
is a uniform and extensive formalization of all mutimodal logics axioma-
tizable by a, b, c, d-incestuality axiom: 〈a〉[b]ϕ → [c]〈d〉ϕ, where a, b, c, d
are indices of, not necessarily different and possibly complex, modalities
(cf. Section 5.3). To define tableau sat-calculus simulating Baldoni’s result
it is sufficient to take a multimodal version of Blackburn’s sat-system (i.e.
(BBridge) and four modal rules defined for each modality) for KH@ and
add the following rules:

(@;E) @i〈a; b〉j / @i〈a〉k, @k〈b〉j, k new on the branch
(@ ∪ E) @i〈a ∪ b〉j / @i〈a〉j | @i〈b〉j
(@GGA) @i〈a〉j, @i〈c〉k / @j〈b〉m, @k〈d〉m, m new on the branch

The rules (@;E) and (@ ∪ E) govern decomposition of complex modal-
ities whereas (@GGA) (from generalized Geach Axiom) corresponds to a,
b, c, d-incestuality axiom. In such an extension of Blackburn’s calculus one
may easily step-wise simulate every proof-tree of Baldoni’s TS.

Remark 12.1 We have pointed out that some rules of TS’s for hybrid logics
use more than one premise which makes them in some respects more similar
to KE or ND systems. It is evident especially on the field of automation
since more complicated procedures are required than in ordinary TS (cf.
considerations in Section 4.2.1). Note however, that e.g., any rule of the
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form A, B / C may be transformed into A / − B | C, where A,B,C
are some data structures and −B is a suitable form of the complement of
B. Such an operation may be generalised for rules with more premises and
more consequences as well. This way we avoid multi-premise rules in TS
but at the expense of introducing more branching rules which has other bad
consequences. Clearly, this technique may be applied in the other direction
if we want to dimnish the number of branching rules in the system. For
instance, (@ ∪ E) may be replaced by modus tollendo ponens-like pair of
rules: @i〈a∪b〉j, ¬@i〈a〉j / @i〈b〉j and @i〈a∪b〉j, ¬@i〈b〉j / @i〈a〉j. Clearly,
at least an analytic cut is unavoidable in such a system. ♣

12.4 Natural Deduction Systems

The first investigation on ND-systems for hybrid logics was, in fact, under-
taken by Seligman [248] but in a slightly different context of logic of correct
description. Much of the work on the sat-ND was done by Braüner, in par-
ticular in [55]. Below we present three systems: the first two due to the
author and the third due to Braüner.

The first two systems are standard in the sense that they are just ex-
tensions of standard KM with additional rules. Moreover, in both cases
rules of the system are defined on all kinds of formulae (not only on sat-
formulae). We propose two versions of standard ND system: the first is
closer to axiomatic system, and the second is based on Seligman’s SC. Both
were constructed with simplicity (in the sense of doing proofs by hand) in
mind. In consequence, they are highly redundant.

The third ND is a sat-calculus due to Braüner. It is more elegant and
concise, because it was constructed mainly for theoretical purposes. Its set
of rules is defined with particular goal in mind – the proof of normalization
theorem.

12.4.1 Standard ND-Systems for KH@

For the first ND we take as a basis full KM for standard modal logic K
with [NEC] and [POS] as described in Chapter 6. The set of additional
rules is modelled on the axiomatic formulation from the preceding Chapter
(Section 11.3). To obtain an ND-system for the basic hybrid logic KH@ we
need two additional sets of rules:
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3. Inference Hybrid rules:

(IS-D) ¬@iϕ // @i¬ϕ
(I⊥@) @i⊥ // ⊥
(I@I) i, ϕ / @iϕ
(I@E) i, @iϕ / ϕ
(I@@E) @j@iϕ // @iϕ
(IRef) ∅ / @ii
(I♦E) ♦@iϕ / @iϕ
(I�I) @iϕ / �@iϕ
(I � @E) @iϕ / ϕ, provided � @iϕ and i is not in ϕ

4. Hybrid proof construction rules

[@I] If Γ � ϕ, then @iΓ � @iϕ, where @iΓ = {@iϕ : ϕ ∈ Γ}
[@�] If Γ, @i♦j � @jϕ, then Γ � @i�ϕ,

where j is new in a derivation (hence also not in ϕ)

In Kalish/Montague format both rules are represented as follows:

@iΓ Γ
i SHØW: @iϕ i SHØW: @i�ϕ

Γ i+ 1 @i♦j
... Γ
...

...
k ϕ k @jϕ

One should note that [@I] creates a strict subproof since we must use re-
iteration on sat-formulae changing them into ordinary (perhaps different sat-
formulae) by deletion of @i, whereas [@�] makes an ordinary subproof (all
formulae from the outer derivation are permitted in the subproof). Hence,
on the level of realization we need not only additional rules for closure of a
subderivation and for introducing assumption (in [@�]), but also a modifi-
cation of reiteration rule allowing ϕ to be put below S-formula @iψ if @iϕ
is above it. We leave suitable formulation along the lines of Section 6.3 to
the reader. Notice however, that this form of reiteration is admissible only
on sat-formulae with the same nominal i which is present in the S-formula
opening a subderivation.

The set of rules of this system is redundant. (I@I) is interderivable
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with (I@E) and (I�I) with (I♦E) but it is nice to have them in pairs
for symmetry. (I⊥@) is derivable, (by [@I] on �, (IS-D) and (⊥I) in one
direction, and by (DS) in the second) but simplifies proofs. Both proof
construction rules are necessary if we want to have ND-equivalent of H-
K+

H@. But note that [@�] is just an ND-realisation of (BG), so it may
be omitted if we need only complete ND-formalization of KH@. The same
applies to (I � @E) which is a counterpart of axiomatic (NAME).

Although the set of rules is redundant, it does not include the rules
corresponding to symmetry of @, or to some forms of Leibniz’ rule (like
(@Nom) in Blackburn’s SC); rules like (I@E) and (I@I) are sufficiently
strong to make them derivable (cf. with the axiomatic formulation of KH@

in Chapter 11).
Below we present two proofs as an illustration of how this system works.

The first is a proof of Nom2, the second should be compared with (B�E)
in Braüner’s system.

1 SHØW: @ij ∧ @jp→ @ip [6, COND]
2 @ij ∧ @jp ass.
3 @ij (2, αE)
4 @jp (2, αE)
5 @i@jp (4, I@@E)
6 SHØW: @ip [9,@I]
7 @jp (5, Reit.)
8 j (3, Reit.)
9 p (7, 8, I@E)

1 SHØW: @i�p ∧ @i♦j → @jp [13, COND]
2 @i�p ∧ @i♦j ass.
3 @i�p (2, αE)
4 @i♦j (2, αE)
5 SHØW: @i@jp [12,@I]
6 �p (3, Reit.)
7 ♦j (4, Reit.)
8 SHØW: ♦@jp [11, POS]
9 j mod. ass.
10 p (6, Reit.)
11 @jp (9, 10, I@I)
12 @jp (8, I♦E)
13 @jp (5, I@@E)
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It is quite an easy task to prove completeness of this system with respect
to KH@. Since ordinary modal basis for K is provided by resources of KM-
K, it is sufficient to prove all the axioms given in Section 11.3 which is
immediate: @K is provable by [@I], Selfdual@ by (IS-D), e.t.c. As for
the rules of H-KH@, (RG@) is simulated by [@I] with empty Γ and (BG)
by [@�]. Hence, the pure completeness theorem stated for H-K+

H@ holds
also for the present ND-system.

To establish soundness one must prove that all inference rules are KH@-
normal and that proof construction rules preserve KH@-normality. We will
show the case of [@�]:

Proof Assume that Γ, @i♦j |= @jϕ but Γ �|= @i�ϕ, hence, for some
w, w � Γ and w � @i�ϕ, i.e. V (i) � �ϕ. So there is w′ such that V (i)Rw′

and w′
� ϕ. Since j is arbitrary we may assume {w′} = V (j), so @i♦j holds

in every world, in particular w � @i♦j, which implies w � @jϕ. But then
V (j) � ϕ and we have a contradiction.

We are entitled to state:

Theorem 12.2 KM-K+
H@ in the first version is adequate for K+

H@

Moreover, this result applies to all extensions obtained by means of
pure axioms. As a result, the extension to many stronger modal logics
may be done in two ways. The first runs as in KM for standard modal
logics, by modifying reiteration rule (see Chapters 6 and 7). But in the
light of our pure completeness results we may obtain much more uniform
ND formalization of several hybrid logics by addition of new inference rules
modelled on pure axioms. Interesting and very general solution of this kind
due to Braüner will be considered in the next subsection. Also the question
of extension of this system to stronger languages (e.g. with ↓ or global
modalities) does not generate any problems. We can add suitable rules
from Braüner’s system or from Blackburn’s TS.

The second choice in defining ND for hybrid logic is to follow SC of
Seligman. This time we need as a basis only KM-CPL from Chapter 2. Let
us first display the additional proof construction rules:

[NAME] If Γ, i � ϕ, then Γ � ϕ, where both Γ and ϕ are sat-formulae
[�] If Γ, ♦i � @iϕ, then Γ � �ϕ, where i is new in the proof

In Kalish/Montague format they are represented as follows:
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Γ Γ
i SHØW: ϕ i SHØW: �ϕ
i+ 1 i i+ 1 ♦i

Γ Γ
...

...
k ϕ k @iϕ

One can easily note that [NAME] covers (TERM) from Seligman’s SC,
whereas [�] corresponds to his (H ⇒ �) (and (H♦ ⇒) by interdefinability).
Once again, [NAME] is a strict subderivation creating rule, whereas [�] in-
troduces an ordinary subderivation. Note however, that in contrast to [@I],
the requirements concerning [NAME] are not so strict. First, sat-formulae
are simply reiterated into a subderivation without deletion of sat-operators.
It is also not demanded that all reiterated sat-formulae and S-formula have
the same nominal as an argument of sat-operator. Also, a nominal assump-
tion under S-line may be any nominal we need. The introduction of this
assumption under S-line containing sat-formula is optional, but if we want
to close this subderivation by [NAME] its presence is obligatory. We leave
the precise statement of these rules on the level of realization to the reader.

These proof construction rules are deductively so strong that not only
we can get rid of [NEC] but also the set of inference rules proposed for the
former system may be limited to: (IS-D), (I@I), (I@E). In fact, for com-
pleteness one half of (IS-D) (from left to right), and one of interderivable
(I@I), (I@E) is enough (cf. remarks above). On the other hand, we need
at least one rule from the pair of additional (interderivable) rules:

(I¬♦E) ¬♦ϕ, ♦j / @j¬ϕ
(I�E) �ϕ, ♦j / @jϕ

Clearly, to obtain a formalization of K+
H@ we must add (I � @E) (for

simulation of (NAME)) as well, or to introduce a stronger form of [NAME]
instead:

[NAME′] If Γ, i � ϕ, then Γ � ϕ, where either both Γ and ϕ are
sat-formulae or i is new.

This proof construction rule amalgamate both Seligman’s (TERM) and
(S-NAME). On the other hand, [�] is needed not only to simulate (BG)
but is indispensable for completeness even if we want to capture KH@ only.
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Although the proposed rules are modelled on SC rules of Seligman’s
system we have no counterpart of (N1). Such a global rule is not easy to
obtain for ND-system like this but the system is already complete for K+

H@

without it as we will show. One may doubt about this when comparing [�]
with [�@] which was the exact counterpart of (BG). But the latter rule is
easily proved admissible in the current system. Namely, every application
of [�@] in a proof may be substituted by the subproof using [NAME] and
[�], as the following schema shows:

1 SHØW: @i�ϕ [8, NAME]
2 i ass.
3 SHØW: �ϕ [7,�]
4 ♦j ass.
5 @i♦j (2, 4, I@I)

6
...

7 @jϕ (5 by assumption)
8 @i�ϕ (2, 3, I@I)

One may establish completeness of this system for K+
H@ by proving

all axioms and showing admissibility of all rules of H-K+
H@. This time

proofs are more involved and we must additionaly prove K and demonstrate
admissibility of (RG) (since we do not have [NEC]). We will prove in detail
K, one half of Agree, and admissibility of (RG), leaving the rest to the
reader (but with some hints how to do it).

As for the simulation of primitive rules of H-K+
H@ one may read off

from the proof schema given above how to replace the applications of (BG)
by [NAME] and [�]. For (RG) let [D] be a proof of ϕ, then it may be
transformed into the proof of �ϕ in the following way:

1 SHØW: �ϕ [3,�]
2 ♦i ass.
3 SHØW: @iϕ [k,NAME]
4 i (nom.ass.)
5 SHØW: ϕ [byD]

D by hyp.
k @iϕ (4, 5, I@I)

By the way, the above schema shows also in lines 3 − k how (RG@) is
simulated in our ND. The case of (MP ) and (Sub@) is obvious. (NAME) is
covered either by (I � @E) or by [NAME′] with Γ empty and an application
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of (I@E). To prove Ref@ we need only [NAME] and (I@I). One half of
Selfdual is provided by (IS-D), whereas the other is proved by [NAME]
and (I@E). One half of Agree is proved below, the other needs [NAME]
and (I@E).

1 SHØW: @jp→ @i@jp [3, COND]
2 @jp ass.
3 SHØW: @i@jp [10, RED]
4 ¬@i@jp (ass.)
5 SHØW: ¬@jp [9, NAME]
6 i nom. ass.
7 ¬@i@jp (4, Reit.)
8 @i¬@jp (7, IS-D)
9 ¬@jp (6, 8, I@E)
10 ⊥ (2, 5, DS)

Intro@ is proved directly by (I@I), whereas for Back we need [�] and
Agree to simplify proof (or repeat the above proof inside). Finally, K may
be proved in this way:

1 SHØW: �(p→ q) → (�p→ �q) [19, RED]
2 ¬(�(p→ q) → (�p→ �q)) ass.
3 �(p→ q) (2, αE)
4 ¬(�p→ �q) (2, αE)
5 �p (4, αE)
6 ¬�q (4, αE)
7 SHØW: �q [11,�]
8 ♦i (ass.)
9 @i(p→ q) (3, 8, I�E)
10 @ip (5, 8, I�E)
11 SHØW: @iq [18, NAME]
12 i nom. ass.
13 @i(p→ q) (9, Reit.)
14 @ip (10, Reit.)
15 p→ q (12, 13, I@E)
16 p (12, 14, I@E)
17 q (15, 16, βE)
18 @iq (12, 17, I@I)
19 ⊥ (6, 7, DS)
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Note that this proof in lines 8–18 provides also a proof of (RG@) and
we are done. Hence, by completeness of H-K+

H@ we obtain a completeness
of this ND system with respect to K+

H@.
Soundness proof is easier and partly follows from the one obtained for

the first version. It is enough to prove normality of (I�E) or (I¬♦E)
and normality preservation of proof construction rules. For [�] the proof is
analogous as for [@�]; we demonstrate the case of [NAME]:

Proof Assume that Γ, i |= ϕ but Γ �|= ϕ, hence, for some w, w � Γ and
w � ϕ. Since all elements of Γ are sat-formulae, then they are satisfied in
all worlds, in particular in V (i). Hence V (i) � Γ and V (i) � i which implies
V (i) � ϕ. But this leads to contradiction since ϕ is also sat-formula and
must be satisfied in all worlds, in particular in w.

As a result we have:

Theorem 12.3 KM-K+
H@ in the second version is adequate for K+

H@

For practical purpose (to make simpler proofs) in the second version
one may of course use all other inference rules stated above for the first
version; they are all derivable. In fact, we may just combine them both in
one very redundant system since [@I] and [NEC] is also admissible in the
second version. Note that if we want to have inference rules corresponding
to (H♦ ⇒) and (H ⇒ �), instead of [�], then the following pair will work:

(I♦E′) ♦ϕ / ♦i, @iϕ, where i is new
(I¬�E) ¬�ϕ / ♦i, @i¬ϕ, where i is new

The extensions to other logics or stronger languages may be obtained in
the same way as was stated for the first version.

12.4.2 Braüner’s ND-System

As we already remarked, ND-system of Braüner is an example of sat-calculus
and shows many similarities to Blackburn’s SC and tableau calculus. It is
a great value of this system that it represents a uniform formalization of a
wide class of logics. Before we specify what kind of strengthenings is dealt
with, we present a basic system for KH@.
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1. Inference rules

(B ∧ E) @i(ϕ ∧ ψ) / @iϕ, @iψ
(B ∧ I) @iϕ, @iψ / @i(ϕ ∧ ψ)
(B → E) @i(ϕ→ ψ), @iϕ / @iψ
(B⊥I) @i⊥ / @j⊥
(B@I) @iϕ / @j@iϕ
(B@E) @j@iϕ / @iϕ
(BRef) ∅ / @ii
(BNom1) @ij, @iϕ / @jϕ, where ϕ ∈ AT
(BNom2) @ij, @i♦k / @j♦k
(B�E) @i�ϕ, @i♦j / @jϕ

2. Proof construction rules

[@COND] If Γ, @iϕ � @iψ, then Γ � @i(ϕ→ ψ)
[@RAA] If Γ, @i¬ϕ � @i⊥, then Γ � @iϕ, where ϕ ∈ AT

[B�] If Γ, @i♦j � @jϕ, then Γ � @i�ϕ, where j is not in ϕ
or in any undischarged assumption in Γ

Since rules of Braüner differ remarkably both from SC sat-calculus of
Blackburn and from axiomatic formulation, we make some comments on
them.6 It is obvious that for booleans we have ordinary ND-rules but with
@i as added context; it applies to inference rules, and to proof construction
rules as well. Since the proof of normalization theorem is the main goal
of Braüner, the calculus is ¬-free, with ⊥ instead; ¬ and ♦ are used in
proof-schemata as obvious definitional shorthands. Moreover, note that in
this system ⊥ is treated locally (with @i added), that’s why Braüner needs
(B⊥I) as a kind of (inconsistency) propagation rule, necessary to perform
[@RAA].

As for hybrid rules, [B�] is essentially the same as [@�] and – as we
remarked earlier – it is just ND-form of (BG). (BRef), (B@I) and (B@E)
are direct counterparts of axioms Ref@ and Agree from Section 11.3, but
note that (BNom2) is not the same as a thesis Nom2 and it is also different
from Bridge (although (BNom1) is just a thesisNom1). A comparison with
Blackburn’s TS shows that, despite appearances, it is not that (BNom1)
corresponds to Blackburn’s (BNom) and (BNom2) to (BBridge), although
(BNom1) is the same as (BNom1) from [44]. In fact, both Braüner’s rules
(BNom1) and (BNom2) may be covered by one general rule:

6On the other hand, one may note that some of the rules are identical to Blackburn’s
rules; in this case we use the same names for Braüner’s and tableau rules.
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(BNom′) @ij, @iϕ / @jϕ

which is interderivable (by selfduality of @) with Blackburn’s:

(BNom) @ij, @jϕ / @iϕ

On the other hand, to derive (BBridge) we need a rule (B�E) (the
same as in Blackburn’s TS) which in fact plays a role of axiom Back.

Regarding extensions, one should note first that Braüner provided nor-
malization theorem for ND-system adequate not only for special extensions
over KH@ but also over KH@↓ and KH@∀. The rules for ↓ and ∀ are the
following:

(B ↓ E) @i ↓uϕ, @ij / @jϕ[u/j]
[B ↓ I] if Γ, @ij � @jϕ[u/j], then Γ � @i ↓uϕ, where j is not in ϕ

or in any undischarged assumption in Γ
(B∀E) @i∀uϕ / @iϕ[u/j]
(B∀I) @iϕ[u/j] / @i∀uϕ, where j is not in @i∀uϕ

or any undischarged assumption

In fact, the formulation of rules for binders in Braüner’s system is a bit
different since he uses only state variables, so ordinary conditions concerning
proper substitution of variables must be satisfied and side conditions forbid
only free occurences of substituted variable which in our formulation is just
a nominal j.

Now we consider what kind of extensions is considered by Braüner. He
has proved a general completeness theorem (and general normalization the-
orem) for all logics (in one of the hybrid languages LH@,LH@↓,LH@∀) whose
classes of frames (i.e. accessibility conditions) are expressed by geometric
theories (see [286] and Section 1.1.5). For reader’s convenience we recall
here the schema of the basic geometric formula:

(bgf) ∀x1, ..., xk(ϕ1 ∧ ... ∧ ϕn → ∃y1, ..., yl(ψ1 ∨ ... ∨ ψm)),

where k ≥ 1, l, n,m ≥ 0, each ϕi is an atom and each ψi is an atom or finite
conjunction of atoms.

Every case of (bgf) corresponds in hybrid language via HT -translation
function to ND-rule of the following form:

[BGR] If Γ1,Ψ1 � χ, ...,Γm,Ψm � χ, then Δ,Γ1, ...,Γm, ϕ′
1, ..., ϕ

′
n � χ,
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where k ≥ 1, l, n,m ≥ 0, each ϕ′
i = HT (ϕi), each Ψi is a set of HT -

translations of atoms that make together a conjunction ψi, and no nominal
corresponding to yi occurs in χ,Γ1 − Γm,Δ, ϕ′

1 − ϕ′
n.

This rather complicated general characteristics may become clearer if
we take a look at some examples. For instance, conditions of symmetry,
asymmetry, antisymmetry, transitivity, irreflexivity belong to this category.
Notice, that in case of irreflexivity and asymmetry, because of the lack of
negation, we have in mind the following formulae:

∀x(Rxx→ ⊥)
∀xy(Rxy ∧Ryx→ ⊥)

This is not the whole story – we note the following cases of bgf-s:

• every instance of Geach axiom, in particular Church-Rosser property

• every Horn clause

As for Horn clauses, just note that it is a bgf with l = 0,m = 1 and ψ1

being an atom. In case of Horn clauses the schema of the corresponding
rule may be simplified:

(HR) ϕ1, ..., ϕn / ψ1

Notice, that this result is a generalization of that obtained by Basin,
Matthews and Vigano [21], since their labelled ND-system covers only logics
axiomatized by Horn clauses. One should also note, that not every case of
(bgf) is expressible by pure formula unless ∀ is present. So in weaker hybrid
languages Braüner’s completeness theorem covers some logics not captured
by pure completeness theorem.

The result of Braüner is similar to that of Demri [78] mentioned earlier.
His general rule corresponds to the class of restricted Π0

2-formulae of the
form:

∀x1, ..., xk∃y1, ..., yl(ϕ1 ∧ ... ∧ ϕn → (ψ1 ∨ ... ∨ ψm)),

where k ≥ 1, l, n,m ≥ 0, each ϕi is a literal (atom in the sense defined above
or its negation) with variables only from {x1, ..., xk} and each ψi is a literal
or finite conjunction of literals.

This class of formulae also includes Horn formulae and is equivalent to
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the class of all first-order formulae which are primitive in the sense of Kracht
[165].

We finish this discussion with two examples of rules corresponding to
concrete bgf-s: antisymmetry and Church-Rosser:

[ANTISYM ] If Γ,@ij � χ, then Δ,Γ,@i♦j,@j♦i � χ
[C-R] If Γ,@j♦l,@k♦l � χ, then Δ,Γ,@i♦j,@i♦k � χ

where l is not in χ,Γ,Δ

The first of them may be simplified to inference rule, since it is an
instance of a Horn clause:

(Antisym) @i♦j,@j♦i / @ij

Braüner uses tree-format of proof-representation, since it is well behaved
with respect to proving normalization theorem. But of course we can display
proofs in his system as Kalish-Montague style proofs. Here is an example:

1 SHØW: @i(♦j ∧ @jp→ ♦p) [6,@COND]
2 @i(♦j ∧ @jp) ass.
3 @i♦j (2, B ∧ E)
4 @i@jp (2, B ∧ E)
5 @jp (4, B@E)
6 SHØW: @i♦p [10,@RAA]
7 @i�(p→ ⊥) ass.
8 @j(p→ ⊥) (3, 7, B�E)
9 @j⊥ (5, 8, B → E)
10 @i⊥ (9, B⊥I)

Clearly, in general, one encounters similar problems with realization of
[BGR] in KM format as with other proof construction rules which close
many subderivations in one step (cf. Section 6.5). But as we will see, in
hybrid form of RND this may be easily overcome.

Results of Braüner may be transferred to SC; in fact, Braüner himself
did it. On the basis of his ND-system he defines cut-free sat SC similar to
that of Blackburn. The differences are the following:

• one more axiom of the form: @i⊥,Γ ⇒ Δ

• a rule for (� ⇒) like in Seligman’s calculus with 2 premises
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• different special rules

As for the last point: (@Ref) is the same, but instead of (@Sym), (@Nom)
and (@Bridge) there are two SC counterparts of (BNom1) and (BNom2):

(BNom1 ⇒)1 Γ⇒ Δ,@ij Γ⇒ Δ,@iϕ
Γ⇒ Δ,@jϕ

(BNom2 ⇒) Γ⇒ Δ,@ij Γ⇒ Δ,@i♦k @j♦k,Γ⇒ Δ
Γ⇒ Δ

1. where ϕ ∈ ATOM

For ↓ and ∀ the rules are as follows:

(B ↓⇒) Γ⇒ Δ,@ij @jϕ[u/j],Γ⇒ Δ
@i ↓uϕ,Γ⇒ Δ (B ⇒↓)1 @ij,Γ⇒ Δ,@jϕ[u/j]

Γ⇒ Δ,@i ↓uϕ

(B∀⇒) @iϕ[u/j],Γ⇒ Δ
@i∀uϕ,Γ⇒ Δ (B ⇒∀)1 Γ⇒ Δ,@iϕ[u/j]

Γ⇒ Δ,@i∀uϕ

1. j does not occur in the conclusion.
SC schema of rules for (bgf) is of the form:

(BGR) Γ⇒ Δ, ϕ′
1 ... Γ⇒ Δ, ϕ′

n Ψ1,Γ⇒ Δ ... Ψm,Γ⇒ Δ
Γ⇒ Δ

where k ≥ 1, l, n,m ≥ 0, each ϕ′
i = HT (ϕi), each Ψi is a set of HT -

translations of atoms that form conjunction ψi and no nominal that corre-
sponds to yi occurs in Γ1 − Γm,Δ, ϕ′

1 − ϕ′
n.

This calculus satisfies the following quasi-subformula property:

Every formula occuring in a derivation of Γ ⇒ Δ is a quasi-subformula
of elements in Γ∪Δ or a quasi-subformula of some @ij or @i♦j, where @iϕ
is a quasi-subformula of @jψ iff ϕ is an ordinary subformula of ψ.

Clearly, his ND-systems also satisfies this property for normal proofs,
but the formulation in this context is more complicated, so we address the
reader to [55] for details.

Finally, we should note that the possibility of defining such a uniform
calculus is essentially dependent on the capability of hybrid languages to
express such things like state identity, state succession and internalization
of satisfaction statements. For ordinary modal languages it is possible only
if we use strong labelling like in [21] or [237].
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12.5 Resolution

On the field of application of resolution to modal logics, hybrid languages
seem to offer far reaching simplification due to the machinery of nominals
and sat-operators. But the presence of @ is essential; without sat-operators
we are unable to take a formula out of the scope of modal operator. Because
of that, the two resolution systems for hybrid logics presented below belong
to the group of sat-calculi, i.e. both are defined on clauses containing only
sat-formulae. On the other hand, clauses are in generalized form; they
contain not only literals prefixed with @i but any sat-formulae.

First of these calculi was constructed by Areces, de Nivelle, de Rijke and
Heguiabehere [10] and later implemented [11] under the name HyLoRes.
The main motivation was to find an efficient reasoning system useful for
automated theorem proving. Recent form of this system applies many op-
timization techniques discovered for first-order resolution, like ordering and
selection functions (see [12]), and is still improved.

The second system presented in this section is the final generalization
of our RND system. In contrast to HyLoRes it was not constructed with
automated deduction in mind but rather for obtaining a general, user’s
friendly framework, open for free application of several proof techniques.

12.5.1 HyLoRes

Resolution system constructed by Areces and others [10] is an effective sys-
tem defined for automated deduction. Its implementation is called HyLoRes
and may be download from hybrid logic web page. For convenience we will
apply the name of a prover to the system as well. The version presented
below is taken from [10], where it is embedded in a more general setting
of labelled resolution containing systems for ordinary modal logics (K and
some of its extensions), description logic ALCR and hybrid KH↓@.

As we already remarked the system does not operate on ordinary clauses
obtained as a result of previous transformation to normal form. But the
formulae in clauses are assumed to be in negation normal form by the ap-
plication of the following rewriting procedure nf :

nf(¬¬ϕ) = ϕ
nf(♦ϕ) = ¬�¬ϕ

nf(ϕ ∨ ψ) = ¬(¬ϕ ∧ ¬ψ)

As a result, special rules for negation are dispensable. The rules of the
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basic version for KH@ are the following:

(@Res) Γ,@iϕ ; Δ,@i¬ϕ / Γ,Δ
(C@∧) Γ, @i(ϕ ∧ ψ) / Γ, @iϕ ; Γ, @iψ
(C@¬∧) Γ, @i¬(ϕ ∧ ψ) / Γ, @inf(¬ϕ), @inf(¬ψ)
(C@¬�) Γ,@i¬�ϕ / Γ,@i¬�¬j ; Γ,@jnf(¬ϕ) ,

where j is a new nominal
(C@�) Γ,@i¬�¬j ; Δ,@i�ϕ / Γ,Δ,@jϕ
(C@) Γ,@i@jϕ / Γ,@jϕ
(C@Ref) Γ,@i¬i / Γ
(C@Sym) Γ,@ij / Γ,@ji
(C@Param) Γ,@ij ; Δ, ϕ / Γ,Δ, ϕ[i//j]

Note the similarity of these rules to the rules of Blackburn’s tableau cal-
culus. In fact, most of the tableau rules are just special forms of these res-
olution rules with Γ = Δ = ∅ and with obvious differences of β-rules, since
here we have no branching but just transformation of a clause. The only
important differences concern (C@Ref) and (C@Param) (from paramod-
ulation). The latter covers Blackbourn’s rules (BNom) and (BBridge) but
in the more general form. (C@Ref) obviously in both systems covers reflex-
ivity of the identity relation between nominals, but note that the present
form has genuinely resolution character (deletion, not addition, of a suitable
formula). Needless to say that (C@Sym) is derivable, as in other calculi
with the similar set of rules for nominals.

Essential similarities of rules in non-clausal forms of resolution systems
to tableau expansion rules are rather unavoidable since resolution steps are
interleaved with simplification steps. It is more natural and simpler to use
resolution on any formulae, not only on literals, especially in the context of
modal logics.

In fact, essential resolution steps are connected not only with the appli-
cation of (@Res) and (C@Ref). Closer analysis of (C@�) also shows that
it is a kind of a resolution rule. If we apply standard translation we can
see that it is an ordinary resolution on Rij and ¬Rix with unification on
x. One can ask if it is possible to define more rules that are resolution-like
rather than tableau-like. For example, instead od (C@Sym) we can use:

(C@Sym′) Γ,@ij, Δ,¬@ji / Γ,Δ

We return to this question in a more detailed way after the presentation
of the second system. One should also observe that (C@¬�) is a kind of
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skolemization but limited to introduction of constants only.

A deduction of a clause Γ from a set of clauses X (X � Γ) in HyLoRes
is defined as a finite sequence of sets of clauses X1, ..., Xn, where X1 =
X,Γ ∈ Xn and each Xi, 1 < i consists of the set of clauses obtained by the
application of one of the rules to Xi−1. If Xn = ⊥ then we have a refutation
of X. Obviously, the proof of ϕ is a refutation of {@inf(¬ϕ)}, where i /∈ ϕ,
exactly as in other sat-calculi.

Since HyLoRes is a universal proof system we can use it also for
constructing falsifying models (model extraction from nonsuccessful

HyLoRes may be extended also to undecidable KH@↓ just by adding one
rule:

(C@ ↓) Γ,@i ↓uϕ / Γ,@iϕ[u/i]

Below we reproduce an example of a proof. Let our ϕ :=↓u♦(u∧p) → p
which is a thesis of KH@↓. Then {@inf(¬ϕ)} := {@i((↓u♦(u ∧ p)) ∧ ¬p)}.
The proof in HyLoRes looks like that:

1 @i((↓u¬�¬(u ∧ p)) ∧ ¬p)
2 @i(↓u¬�¬(u ∧ p)) ; @i¬p (C@∧)
3 @i(¬�¬(i ∧ p)) ; @i¬p (C@ ↓)
4 @i¬�¬j ; @j(i ∧ p) ; @i¬p (C@¬�)
5 @ji ; @jp ; @i¬p (C@∧)
6 @ip ; @i¬p (C@Param)
7 ⊥ (@Res)

No extension to other logics over KH@ or KH@↓ is considered but three
such rules are presented for labelled resolution system for ordinary modal
logic that may be applied also in the hybrid setting so we display suitable
transformations below:

(C@T ) Γ,@i�ϕ / Γ,@iϕ
(C@D) Γ,@i�ϕ / Γ,@i¬�nf(¬ϕ)
(C@4) Γ,@i�ϕj ; Δ,@i¬�¬j / Γ,Δ,@j�ϕ

Notice, that these rules do not correspond to pure axioms. Moreover,
(C@4) introduces the risk of a loop, so procedure from completeness proof

refutations). [10] contains a constructive completeness proof of resolution
system for description logic which applies with small modifications to the
system above and from which a suitable decision procedure may be
obtained.
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must be modified accordingly in order to save termination. We will turn to
the problem of extension to stronger logics in the next subsection.

In the actual form of HyLoRes, several constraints on the applicability
of rules are involved that serve to increase its efficiency. Since a discussion
of advanced optimization techniques is beyond the scope of this text, condi-
tions on selection functions etc. are omitted in our simplified presentation.

12.5.2 HRND – Hybrid RND-System

Once again we return to RND system. Now, we will consider the possibility
of extending its application to hybrid logics. In the first place we present
a sat-calculus for basic hybrid logic. Next we will pay an attention to the
problem of extensions to stronger hybrid logics.

HRND sat-calculus defined on generalised clauses consists of:

1. Sat-versions of classical RND inference rules

(@W ) Γ / Γ,@iϕ
(C@¬) Γ,¬@iϕ // Γ,@i¬ϕ
(@Res) Γ,@iϕ ; Γ,@i − ϕ / Γ
(C@NN) Γ,@i¬¬ϕ // Γ,@iϕ
(C@α) Γ,@iα // Γ,@iα1 ; Γ,@iα2

(C@β) Γ,@iβ // Γ,@iβ1,@iβ2

2. Modal inference rules

(C@π) Γ,@iπ
i / Γ,@i♦j ; Γ,@jπ,

where j is a new nominal in a derivation
(C@ν) Γ,@iν

i ; Δ,@i♦j / Γ,Δ,@jν
(C@) Γ,@i@jϕ // Γ,@jϕ
(C@Ref) Γ,@i¬i / Γ
(C@Sym) Γ,@ij / Γ,@ji
(C@Nom) Γ,@ij ; Δ,@jϕ / Γ,Δ,@iϕ
(C@Bridge) Γ,@ij ; Δ,@k♦i / Γ,Δ,@k♦j

Similarly as in the basic form of RND defined in Chapter 4, we need
only one proof construction rule [SUB]. It is defined exactly as for CPL
but note that every ϕ in the schema is a sat-formula and X is a set of
generalized clauses built up from sat-formulae only.



438 CHAPTER 12. PROOF METHODS FOR MHL

One may easily note that this form of RND is much simpler than MRND
from Chapter 7 or two forms of labelled RND introduced in Chapter 8. The
set of rules is similar to that of HyLoRes, but we admit also building up
rules (// in some rules instead of /). It is because we want to have a system
of more general character than typical analytic systems like tableau calculi.
This generality is needed for a system which may be easily tailored in order
to simulate different proof systems, including in particular ND.

Soundness theorem is proven similarly as for other forms of RND but by
reference to hybrid models defined in the preceding Chapter. Completeness
of HRND will be shown by simulation of Braüner’s ND sat-system.

Lemma 12.2 Inference rules of Braüner’s ND-system are derivable in HRND

(B∧E), (B∧I), (B@I), (B@E), (B�E) are just special cases of (C@α),
(C@) and (C@ν), where Γ = Δ = ∅). Braüner’s (BRef) is derived easily
by our version of the rule, and his (B → E) by (C@β), (@Res) and (@W ).
Both (BNom1) and (BNom2) have simple and similar proofs. Below we
display one of them:

1 SHØW: ¬@ij, ¬@i♦k, @j♦k [5, SUB]
2 @ij ass
3 @i♦k ass
4 @ji (2, C@Sym)
5 @j♦k (3, 4, C@Nom)

(B⊥I) is just a special feature of Braüner’s system, where inconsistency
is local (with @) hence we need some way of its propagation into other
states. In RND inconsistency is global so this rule is not required.

The same applies to proof construction rules.

Lemma 12.3 Proof construction rules of Braüner’s system are admissible
in RND

[@RAA] is a special form of [SUB] with Γ being unit clause, k = 1 and
Δ = ⊥, [@COND] is admissible as in the classical case (cf. Chapter 4).

Every application of [B�] is eliminable in favor of the following sub-
derivation:
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X
k SHØW: @i�ϕ [l + 1, SUB]
k + 1 ¬@i�ϕ ass
k + 2 @i¬�ϕ (k + 1, C@¬)
k + 3 @i♦j (k + 2, C@π)
k + 4 @j¬ϕ (k + 2, C@π)

...
l @jϕ (X, k + 3, by assumption)
l + 1 ⊥ (k + 4, l,@Res)

where X is the set of elements of Γ from the formulation of [B�] but treated
as unit clauses.

On the basis of these two lemmata we obtain (strong) completeness of
HRND-KH@.

We have shown in Chapter 4 that RND is general enough to simulate
proof techniques from many known systems and that it may be simply
restricted to an analytic form. It holds as well for HRND, in particular,
we can simulate resolution system HyLoRes by stipulating that we always
write down all possible assumptions (hence we always attempt an indirect
proof), then we apply only elimination rules (only one direction of (C@¬),
(C@α) and (C@β)). The applications of (C@Param) are easily simulated
by (C@Nom) and (C@Bridge). The difference is only in the form of setting
out a proof: each line of a derivation in HyLoRes corresponds to a stage of
construction of a derivation in HRND, where each clause is put in one line.
So by vertical displaying of horizontally oriented elements (with omission
of clauses that occur in more than one line) we can simulate in HRND
every proof and disproof from HyLoRes. In this way we do not need to
apply building-up rules (including (@W )) at all, and our derivations obey
subformula property. We can apply known strategies used for resolution
and tested on HyLoRes and, in our opinion, thus obtained derivations are
more readable. In a similar way we may show that Blackburn’s tableau
sat-calculus (and decision procedure) may be simulated in HRND. It makes
HRND much better tool for proof search in modal logics than variants of
RND considered in Chapters 7, 8, and 9.
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Extensions

Extending HRND to stronger hybrid languages does not make serious prob-
lems, e.g. we can use HyLoRes rules for ↓. Defining suitable rules for quan-
tifiers is also easy. We can extend HRND to first-order logic, as well. One
way is to use clausal versions of Blackburn’s rules described in Section 12.3.
The other consists in generalizing the rule [SUB] and it was presented in
Indrzejczak [150] in two versions: for classical and free logic quantifiers (cf.
Chapter 4). In what follows we rather focus on defining rules for several
modal logics over KH@. HRDN may be extended to stronger modal logics
in a similar fashion as MRND in Chapter 7. However, some more general
approach is better; Indrzejczak [148] considered three forms of rules:

• with 1-parameter-formula ϕ

(1R-A) Γ, ϕ / Γ

• with 2-parameter-formulae ϕ and ψ

(2Exp-A) Γ, ϕ / Γ, ψ or

(2R-A) Γ, ϕ ; Δ,−ψ / Γ,Δ

• with 3-parameter-formulae ϕ,ψ and χ

(3Exp-A) Γ, ϕ / Γ, ψ, χ or

(3RExp-A) Γ, ϕ ; Δ,−ψ / Γ,Δ, χ or

(3R-A) Γ, ϕ ; Δ,−ψ ; Σ,−χ / Γ,Δ,Σ

Theorem 12.4 Rules of the type (2Exp-A), (2R-A) and (3RExp-A), (3Exp-
A), (3R-A) are interderivable in HRND

The proof of interderivability of rules (2Exp-A) and (2R-A) is the same
as in the case of (Exp-A) and (Res-A) in MRND (cf. Section 7.4) and it
may be directly extended for the rest of the rules.

Clearly, we may also introduce the contrapositives of these rules, ob-
tained by interchanging conclusion-clause with one of the premise-clause
and changing parameters with theirs complements. For example, both rules:

(3RExp-A′) Γ, ϕ ; Δ,−χ / Γ,Δ, ψ and

(3RExp-A′′) Γ,−χ ; Δ,−ψ / Γ,Δ,−ϕ
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are contrapositives of (3RExp-A); obviously, every schema of a rule is in-
terderivable with its contrapositives either.

In fact, some of these types of rules were already present in the basic
set. The rule (C@Ref) represents a particular case of a schema (1R-A).
It may be seen as an expansion rule but it is rather a kind of one-premise
resolution-rule. There is no reason to look for some equivalent.

Many rules represent the schema (2Exp-A). In general, it is a tableau-
like expansion rule which may be replaced by interderivable resolution rule
(2R-A).

Finally, one may observe that the rules (C@ν), (C@Nom) and (C@Bridge)
represent a schema (3RExp-A). At first sight, it may seem to be of essen-
tially resolution-character. This is not the whole truth however, since some
additional formula appears in the conclusion which makes it partly expan-
sion rule as well. This kind of a rule is also interchangeable with an equiva-
lent pure expansion rule of the form (3Exp-A) or with a more involved but
pure kind of a resolution rule of the form (3R-A).

On the basis of this variety of forms one can extend HRND to stronger
logics in different ways depending on the proof strategy which is under
consideration. The type of a rule is encoded in its name, where the number
says how many parameters must be specified, R – means resolution, Exp
means expansion and A is a variable in the name substituted by the name
of suitable axiom when parameters in the rule-schema are specified. In
particular, all the rules of the type Exp are tableau-like, whereas rules of
the type R are forms of resolution modulo substitution of parameters. The
schema (3RExp-A) denotes rules of mixed character – something is cut out
from premises and something new is added in the conclusion.

The table on the top of the next page specifies what substitutions for
parameters we must perform in order to obtain the rules equivalent to suit-
able pure axioms in a modular way. If the places under the heading ψ and
χ are blank it means that we have only unique rule of the form (1R-A); if
only the place under χ is blank we can introduce either the rule of the form
(2Exp-A) or (2R-A), otherwise we have three possible characterizations.

Notice also that for H3′ and HL′ in the table we have in fact, more
general schemata since χ does not refer to a single formula but to a clause.
So, we have χ1, χ2 and χ1, χ2, χ3 respectively, instead of a single χ. For
instance, (3RExp-HL′) has a form Γ, ϕ ; Δ,−ψ / Γ,Δ, χ1, χ2, χ3. Due to
this multiplication of the third parameter we should rather generalize the
schemata of rules for more than 3 parameters. For example, in case of H3′

the following forms (and their contrapositives) are possible:
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axiom ϕ ψ χ

DC ′ @i♦j ¬@i♦k @jk
T ′ ¬@i♦i – –
Irr @i♦i – –
4′ @i♦j ¬@j♦k @i♦k
5′ @i♦j ¬@i♦k @j♦k
B′ @i♦j @j♦i –
As @i♦j ¬@j♦i –
Ant @i♦j ¬@j♦i @ij
Dich ¬@i♦j @j♦i –
Tri ¬@i♦j @j♦i @ij
H3′ @i♦j ¬@i♦k @j♦k, @k♦j
HL′ @i♦j ¬@i♦k @j♦k, @k♦j, @jk

(4RExp-A) Γ, ϕ ; Δ,−ψ ; Σ,−χ1 / Γ,Δ,Σ, χ2

(4R-A) Γ, ϕ ; Δ,−ψ ; Σ,−χ1 ; Π,−χ2 / Γ,Δ,Σ,Π

Here is an example of a proof:

1 SHØW: @i(j → �(♦j → j)) [12, SUB]
2 ¬@i(j → �(♦j → j)) ass
3 @ij (2, C@α)
4 @i¬�(♦j → j) (2, C@α)
5 @i♦k (4, C@π)
6 @k¬(♦j → j) (4, C@π)
7 @k♦j (6, C@α)
8 @k¬j (6, C@α)
9 ¬@kj (8, C@NN)
10 @ji (3, C@Sym)
11 @j♦k (10, 5, C@Nom)
12 ⊥ (7, 11, 9, 3R-Ant)

Nominal Existence Rules

Some of the important conditions need rules of a different form, similar
to node-creating rules of Blackburn (see Section 12.3.2) defined for instances
of Geach Axiom. Below, we give examples of rules for density and for
Church-Rosser property:
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(HRND-4C ′) Γ,@i♦j / Γ,@i♦k ; Γ,@k♦j , where k is a new nominal
(HRND-CR) Γ,@i♦j ; Δ,@i♦k / Γ,Δ,@j♦l ; Γ,Δ,@k♦l,

where l is a new nominal

One more example of a proof:

1 SHØW: @i(♦�j → �♦j) [13, SUB]
2 ¬@i(♦�j → �♦j) ass
3 @i♦�j (2, C@α)
4 @i¬�♦j (2, C@α)
5 @i♦k (3, C@π)
6 @k�j (3, C@π)
7 @i♦l (4, C@π)
8 @l¬♦j (4, C@π)
9 @k♦m (5, 7, HRND-CR)
10 @l♦m (5, 7, HRND-CR)
11 @mj (6, 9, C@ν)
12 @m¬j (8, 10, C@ν)
13 ⊥ (11, 12,@Res)

Such rules differ from those considered above not only because of the
presence of side condition but also because they admit more than one
conclusion-clause. We can easily define a general schema for rules corre-
sponding to Geach axiom by generalizing the schema (@GR) from Black-
burn’s tableau calculus. It takes the form:

Γ1, ϕ1 ; ....; Γm+s, ϕm+s / Γ1, ...,Γm+s, ψ1 ; ...; Γ1, ...,Γm+s, ψn+t,

where, formulae ϕi (i ≤ m+ s) are sat-formulae displayed as premises, and
ψi (i ≤ n + t) are sat-formulae displayed as consequences of this tableau
rule-schema.

HRND enables also a simulation of other generalizations obtained so
far on the ground of several proof methods. To close the discussion we
recall Braüner’s general result for geometric theories. We can define HRND
counterpart of Braüner’s rule from his SC version. It is enough to change
every sequent Γ ⇒ Δ into corresponding clause −Γ,Δ and rewrite the rule-
schema (BGR) accordingly. One may equally easily redefine in clausal form
hybrid versions of Baldoni’s rules stated at the end of Section 12.3 – we
leave it to the reader.
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Presented proof systems show that passing to hybrid languages may
help to overcome many limitations of proof theory for standard modal log-
ics. They also open new perspectives for development of reasoning methods
and inventing new techniques of proof theory in general. In particular,
HRND seems to be quite handy deductive system because its essentially
hybrid character fits pretty well with the spirit of MHL. Easiness of simula-
tion of other systems, shows that it may be used as a convenient framework
for uniform treatment of a great number of modal logics based on solutions
borrowed from different fields. Perhaps HRND may be also used for experi-
mentation with different strategies of proof-search in order to measure their
efficiency. But this claim requires further investigation.



Chapter 11

Modal Hybrid Logics

In this Chapter we briefly describe a powerfull extension of standard modal
logic obtained by some modifications of the language. The fundamental
change, forming the basis of the whole family of hybrid languages, involves
the addition of special symbols called nominals. They enable explicit ref-
erence to states in Kripke models. The name of this approach reflects the
fact that nominals are at the same time names of states in a model, and
sentences of a modal language.

Although the first attempts in this field are quite old and can be traced
back to Arthur Prior’s work on modal and tense logics in late 1950s, the
serious and systematic studies started in 1990s. Contemporary modal hy-
brid logic (MHL in short) seems to be one of the most dynamic branches of
modern modal logic and offers a lot of improvements over classical results.

This Chapter is devoted mainly to the presentation of the problem of
hybrid languages expressivity. We provide a survey of the most important
hybrid languages, logics and their hierarchy. In every case the weakest logic
is defined and complete axiomatization is presented. In particular, after
informal introduction and a sketch of historical development, we introduce
in Section 11.2 the basic hybrid language with nominals and its variant
with satisfaction operators. Two subsequent sections present an axiomatic
treatment of basic hybrid logics and general completeness results. In Sec-
tion 11.5 we consider temporal hybrid logics and their expressive abilities.
The next Section is devoted to a short presentation of the very strong hybrid
languages using additional modal functors and binders of nominal variables.
We conclude this survey with an exposition of first-order modal hybrid logic,
short remarks on decidability and complexity of hybrid logics, and results
concerning interpolation property.

A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, 363
Trends in Logic 30, DOI 10.1007/978-90-481-8785-0 11,
c© Springer Science+Business Media B.V. 2010
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It must be stressed that this Chapter has a rudimentary character; it is
merely a collection of results with references. Usually no proofs are offered
since interested reader may find them in referred papers. The presentation
is heavily based on our survey [155]; more comprehensive introductions to
MHL may be found in [13], [273] or [57].

11.1 Hybrid Logic in Nutshell

11.1.1 Motivation

Before we present MHL we should say a few words on motivations for the
introduction of this variant of modal logic. In the last three chapters we
have focused on labelled approach, trying to show that it is in many respects
a better approach to formalization of modal logics than standard syntac-
tical approach. Still we restricted our interests to some form of external
labelling, while, in Section 6.1, we have distinguished also internalised and
mixed labelling. The main problem with the application of ordinary proof
methods to standard modal logics is connected with the fact that they are
hardly suitable to handle the information which is under the scope of modal
operators. Labels help to overcome the problem, but in case of medium la-
belling we have noted that the success is limited. Strong labelling seems to
offer a uniform syntactic frame comparable to successfull semantic frame-
work provided by relational models. But internalised labelling, present in
hybrid logics, is even stronger and we focus on this approach as the final
proposal.

Generally, internalised labelling consists of the enrichment of the object
language obtained via sorting (of the atoms) and addition of the new oper-
ators and/or modalities. As for the sorting, the most basic and important
innovation is the introduction of nominals – variables being names of states
in a model. This is the fundamental step because in this way we introduce a
local perspective into language which was not accessible in standard modal
languages.

What do we get with the help of such an enrichment? In particular, do
we have some substantial advantages over standard modal languages? This
question is particularly interesting in the context of sorting. It is well known
that in the case of first-order languages we do not get more expressiveness
if we use many sorts of variables – we may only obtain a more compact and
simpler formulation of things already expressible in standard one-sorted
language. However, in the context of modal languages the use of several
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sorts of (propositional) variables leads to real changes in expressive power
and in consequence to further improvements. So, hybrid modal languages
are constructed mainly as tools for repairing the situation of asymmetry
between elements of relational structures and language abilities. In short,
an introduction of hybrid languages give us the following advantages:

• more expressive language

• better behavior in completeness theory

• more natural and simpler proof theory

• good behavior in decidability, complexity, interpolation and other im-
portant features

The first item, in the most literal sense, means that we have more validities
in the logic formulated in enriched language. But more important fact is
that hybrid languages allow us to define many frame properties which are
not expressible in standard modal languages.

These improved expressive capabilities lead to more straightforward,
and in fact complete, theory of frame definability. General completeness
theorems obtained in MHL are also simpler than respective results in the
standard ML, like famous Sahlqvist completeness theorem.

In what sense proof systems for MHL are more natural and simpler,
we will show in the next Chapter but a few words of explanation are in
order. We have mentioned that the application of standard proof meth-
ods to modal logics is complicated because of the difficulties with handling
the sentences which are under the scope of modal operators. As we will
see, in modal hybrid logics there are natural tools, namely nominals and
satisfaction operators (shortly sat-operators), to deal with this problem.
Every modal sentence in MHL may be broken into separate parts; one of
them carry information on the structure of a model, whereas the other gives
us directly the sentence being previously in the scope of modal operators.
This natural way of decomposing a complex information into simpler parts,
makes easier the transfer of non-axiomatic methods from classical logics to
modal logics. Hence, richer languages of MHL offer a more general and
uniform syntactical setting for modal proof theory.

Last thing worth mentioning is that in many cases (but not all) we do
not need to pay for the improved expressive power of the language. One
of the very important features of logics is their decidability and complexity
of decision procedures. As we will see, hybrid counterparts of decidable
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modal logics are still decidable and usually complexity is also untouched
(for example sat-problem for basic hybrid logic is PSPACE-complete as in
standard modal logics K). Moreover, in many respects, hybrid logics behave
better than standard modal logics – it is evident, for example, in the case
of interpolation theorems.

11.1.2 Historical Remarks

Although MHL is quite a fresh branch of modal logic it has origins in late
1950s. But the importance of hybrid logic was not recognized properly until
1990s. I’m not going to enter into historical details (one should consult
[13, 199] for Prior’s ideas), but few words are in order.

All the sources agree that the name of the inventor of MHL belongs
to Arthur Prior. He is well known as a father of standard tense logic,
but some of his later contributions passed unnoticed. Prior devised two
different calculi formally related to McTaggart’s analysis of time in terms
of A- and B-series. Standard tense logic (T-calculus) using tense constants
F and P corresponds to A-series (time expressed in terms of past, present
and future). I-calculus (later called U-calculus), using binary I-relation over
instants of time, corresponds to B-series (earlier/later).

Although I-calculus is more expressive than T-calculus, Prior was con-
vinced that tenses are metaphysically more fundamental. I-calculus provides
only a convenient, but indirect way of speaking. So the Prior’s problem was:
how to show the primacy of T-calculus over I-calculus?

The solution he finally proposed was to develop I-calculus inside T-
calculus via extension of the language, and this led him to the invention
of strong hybrid logic with instant-variables and ∀. In [225], inspired by
Quine’s famous considerations on modality, he introduced the concept of
four grades of tense-logical involvement. Whereas in the first grade, tenses
are regarded just as handy definitions added to I-calculus, further grades
offer essentially hybrid ideas. In the second grade, Prior introduced for-
mulae of the form T (a, ϕ) meaning “ϕ is true at time a” and, moreover,
he admitted that instant variables a, b, c should also represent propositions.
So, two essential ideas of contemporary MHL were introduced: internal-
ization of satisfaction relation (here relative to time instants) and sorting
of propositions into ordinary and nominals (as they are commonly called
nowadays).

The first idea, of using some syntactical operators which encode seman-
tical satisfaction relation, was quite popular. One may recall at least three
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early well known constructions that make use of such operators: the situ-
ation calculus of J. McCarthy and P. Hayes [188], topological logic of N.
Rescher, A. Urquhart [231], and “Holds” operator of J. Allen [4] in his lan-
guage for temporal representation in AI. Independent line of thought leading
to similar ideas is present in the work of J. Perzanowski [208, 209, 210] intro-
ducing the general theory of modal operators (“makers”) in formal ontology.
A similar concept, but developed on the metalevel, was inherent in the idea
of labelled deduction, described in Chapters 8, 9, and 10 as the external
approach to representation of states.

The second idea, although more fundamental for MHL (there are hybrid
languages with only nominals), was for a long time forgotten. The early
work of Prior’s student R. Bull [58] introduces “history variables” for repre-
senting paths in branching tense logic, but it was unnoticed and for a long
time there are no traces of interest in using nominals. The idea of using
nominals comes back in the number of papers (e.g. [202, 203, 102, 114]) writ-
ten by logicians from Sofia school (Gargov, Tinchev, Passy, Goranko) and
devoted particularly to the development of CPDL (Combinatory Proposi-
tional Dynamic Logic). By the way, except the reinvention of nominals, in
the aforementioned works we have also a development of hybrid binders, see
e.g. [114].

A genuine hybrid logic movement started with the works of P. Blackburn
[29, 30] devoted to nominal tense logic, and with the works of J. Seligman
[248] devoted to proof methods for situation theory. Since then, many re-
searchers, including M. Tzakova, M. Marx, C. Areces, T. Braüner, Balder
ten Cate and many others, took part in the development of strong and
versatile theory of MHL.

11.2 Basic Hybrid Logic

11.2.1 Basic Hybrid Language

We obtain the basic hybrid propositional modal language LH@ by adding to
LM (or LT):

(a) the second sort of propositional symbols called nominals. We as-
sume denumerable set NOM = {i, j, k, ...} such that PROP ∩NOM = ∅;
PROP ∪NOM = AT is the set of atomic formulae. Members of NOM are
introduced for naming states of a model domain.
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(b) a denumerable collection of unary satisfaction operators indexed by
nominals @i. The new clause for non-atomic formulae is:

• if ϕ ∈ FOR and i ∈ NOM , then @iϕ ∈ FOR

and it reads “formula ϕ is satisfied in a state i”.

It is convenient to distinguish some classes of formulae. Every formula
built up from nominals and logical constants only, is called pure formula,
every formula of the shape @iϕ or ¬@iϕ is called sat-formula. Some exam-
ples:

♦(i ∧ p) – neither pure nor sat-formula
i→ ♦j – pure but not sat-formula
@i(p→ ♦q) – sat- but not pure formula
@ij, @i♦j – both pure and sat-formulae

It should be observed that both examples of pure sat-formulae play very
important roles. The first one expresses identity of states named i and j,
and the second one expresses accessibility of j from i.

Note two important features of LH@:

• Both nominals and satisfaction operators are genuine language ele-
ments not an extra metalinguistic machinery. This is what we’ve
called internalised approach in contrast to external approach present
in Fitting’s or Gabbay’s solutions.

• Although nominals are terms, they are treated as ordinary sentences.
In particular, they can be connected with the help of boolean operators
and combined with modal and tense operators. In fact, they play a
double role:

– of propositional symbols representing propositions of the form
“the name of the actual state is i”;

– of names of states when they occur as indexes of unary satisfac-
tion operators.

Some authors (e.g. Blackburn [30], Tzakova [277], Demri [78]) prefer to
have a weaker language, with only nominals added but without satisfaction
operators, as the basic hybrid language. In what follows, we use LH to
denote such a language and we will call it the weak hybrid propositional
language.
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11.2.2 Hybrid Models

What is nice with MHL is the fact that changes in the language are some-
times so small that they do not affect seriously the rest of the machinery
applied in ML. In particular, the modifications in the relational semantics
are minimal. The concept of a frame is the same as in ordinary normal
modal (or tense) logics, only on the level of models we have some changes.
A model on the frame F is any structure M = 〈F, V 〉, where V is a valuation
function on atoms (V : AT −→ P(W)) such that for any i ∈ NOM , V (i)
is a singleton. Hence, in case of propositional symbols V behaves as usual,
whereas in case of a nominal i, V (i) picks up the unique state assigned to i
by the model.

Satisfaction of new formulae in states of a model is defined as follows:

M, w � i iff {w} = V (i) for any i ∈ NOM
M, w � @iϕ iff M, w′ � ϕ, where {w′} = V (i)

(or simpler M, V (i) � ϕ)

The concepts of global satisfiability and of validity are the same as for
ordinary modal language. Also definitions of consequence relations remain
intact. The only difference is that if we say “model” we mean a model in
the hybrid sense with a constraint on valuation of nominals.

Note that sat-operators enable us to jump to the named state, so in
consequence we have:

Lemma 11.1 M, w � @iϕ iff M � @iϕ

Let us focus on some consequences of the above definitions. The most
important features of LH@ seem to be:

1. Internalization of local discourse – nominals give a direct representa-
tion of states in a language (we have an object-language mechanism
for storing model data)

2. Possible jumping to already specified states in a model (we have a
mechanism for retrieving model data)

3. Internalization of � by sat-formulae @iϕ

4. Representation of identity theory (for states) by pure formulae @ij;
we have M, w � @ij iff V (i) = V (j)
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5. Internalization of accessibility relation by pure formulae @i♦j; we
have M, w � @i♦j iff 〈V (i), V (j)〉 ∈ R

One should note that points 2–5 are due to the presence of satisfaction
operators, so in LH we have only the first property.

11.2.3 Logic

Let us look at some syntactic properties of our new language elements. First
of all, note that satisfaction operators are indeed modal – in fact normal
modal – constants. One can easilly check that they satisfy:

K@ @i(ϕ→ ψ) → (@iϕ→ @iψ) and
RG@ @iϕ is valid, whenever ϕ is valid

Let KH@ denote the set of all valid formulae in LH@. It is easy to check
that K ⊆ KH@ and that KH@ satisfies closure conditions of normal modal
logic. KH@ is indeed the weakest normal modal logic in LH@. Analogously
we will use KH as a name of the basic hybrid logic in LH and KtH@, KtH
as names of respective temporal logics in suitable hybrid versions of LT. All
these logics are also normal modal logics.

Clearly, due to the richer language KH@ contains denumerably many
new tautologies e.g.

♦(i ∧ p) ∧ ♦(i ∧ q) → ♦(p ∧ q) (11.1)

One can easily check that if we change i with some propositional variable
we obtain non-valid formula in K – it is valid on frames with functional
accessibility relation. But if we check it in any state w of any hybrid model
we can see that both states w′ and w′′ that must be accessible from w in
order to satisfy an antecedent are denotations of i, so they are the same
state which guaranties that consequent is satisfied too.

As we shall see in the next sections, the expressivity of hybrid language
has more serious character than just the presence of new tautologies. We
may state new frame-defining formulae – e.g.: i → ¬♦i defines irreflexiv-
ity and i → ¬♦♦i defines asymmetry. Moreover, KH@ is decidable and
PSPACE-complete just like ordinary K (see [9]).
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11.3 Complete Hilbert Calculi for KH@ and KH

We will focus on the proof theory for MHL in the next Chapter but our
considerations will be connected with the practically useful formalizations.
Axiomatic formulations of suitable hybrid logics will be stated here since
they are useful for considerations on expressiveness, in the context of com-
pleteness results. The axiomatic (or Hilbert) formalization of the basic
hybrid logic KH@ is denoted by H-KH@ and, in addition to axioms of H-K,
contains:

Specific Hybrid Axioms:

K@ @i(p→ q) → (@ip→ @iq)
Selfdual@ @ip↔ ¬@i¬p
Intro@ i ∧ p→ @ip
Ref@ @ii
Agree @i@jp↔ @jp
Back ♦@ip→ @ip

Rules:

(MP ) � ϕ→ ψ,� ϕ / � ψ
(RG) � ϕ / � �ϕ
(RG@) � ϕ / � @iϕ
(SUB@) � ϕ / � e(ϕ),

where e : PROP −→ FOR, but e : NOM −→ NOM

Note, that this axiomatization is not in a sense structural since we have
an important constraint on substitution rule. (SUB@) allows of substitu-
tion of any formula (including nominals) for ordinary propositional symbols
but for a nominal we may substitute only a nominal. To make this evident
we have chosen an axiomatization in object language with explicit substitu-
tion rule instead of a system formulated with the help of axiom schemata,
as we did in the preceding chapters. Hence, @i(j → k) → (@ij → @ik) is
a proper substitution on K@, as well as other substitutions of the above
axioms with p replaced with some nominal. On the other hand, something
like @ip is an illegitimate “substitution” on Ref@.

Our axiomatization is sufficient for completeness but the full character
of @ is not evident from it. One can learn more from the following lemma.
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Lemma 11.2 The following are H-KH@-theses (or rather schemata of the-
ses):

Sym@ @ij ↔ @ji
T ran@ @ij ∧ @jk → @ik
Nom1 @jϕ ∧ @ji→ @iϕ
Nom2 @jϕ ∧ @ij → @iϕ
Bridge ♦i ∧ @iϕ→ ♦ϕ
ConvK@ (@iϕ→ @iψ) → @i(ϕ→ ψ)

Now we can read off the identity theory of @ from these theorems.

As an illustration we give a (schema of a) proof of the Bridge

1. � i ∧ ¬ϕ→ @i¬ϕ (Intro@)
2. � ♦(i ∧ ¬ϕ) → ♦@i¬ϕ (1, by K-admissible rule RM)
3. � ♦i ∧ �¬ϕ→ ♦(i ∧ ¬ϕ) (K-thesis)
4. � ♦i ∧ �¬ϕ→ ♦@i¬ϕ (2, 3, by CPL)
5. � ♦@i¬ϕ→ @i¬ϕ (Back)
6. � ♦i ∧ �¬ϕ→ @i¬ϕ (4, 5, by CPL)
7. � ♦i ∧ ¬@i¬ϕ→ ¬�¬ϕ (6, by CPL)
8. � ♦i ∧ @iϕ→ ♦ϕ (7, Selfdual@, Pos)

Theorem 11.1 (Completeness): The above axiomatic system is strongly
complete for KH@

Soundness of the H-KH@ is easy to prove, the proof of completeness
is by standard canonical model construction applied in modal logics. But
something more is needed for extensions of KH@ if we want to obtain some
general completeness theorem. Let H-K+

H@ be H-KH@ with 2 additional
rules:

(NAME) � @iϕ / � ϕ, provided i /∈ ϕ
(BG) � @i♦j → @jϕ / � @i�ϕ, provided i �= j and j /∈ ϕ

Both rules are admissible in H-KH@, so we have:

Lemma 11.3 Th(H-KH@)=Th(H-K+
H@)

Note again that both additional rules are not standard because their
applications must satisfy side conditions. In this respect they are similar
to famous Gabby-style nonstructural rules applied for defining frame condi-
tions undefinable by standard modal formulae. Let’s look at the rule (BG).
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The premise says that if the denotation of j is accessible from the denota-
tion of i, then ϕ is satisfied in j. But j is arbitrary which is guaranteed
by the proviso, so it means that ϕ is satisfied in every accessible (from i)
state. This justifies the assertion that �ϕ is satisfied in (the denotation
of) i. The name (BG) comes from Bounded Generalization because it is a
modal analog of Universal Generalization from first-order logic. But it is
bounded because the premise is conditional (j is not simply arbitrary but
arbitrary i-accessible state). In that it is more like respective rule from free
logic. The sense of (NAME) is clear: if ϕ is satisfied in an arbitrary state
(again by syntactical proviso), then it is simply valid. Despite its simplicity
the rule plays an important role in the general completeness theorem stated
below. As we shall see in the next Chapter it is also the theoretical basis
for many proof systems called there sat-calculi.

As we have noticed, both rules – being admissible – have no impact
on the set of theses of H-KH@. But they have a strong influence on the
redundancy of the set of primitive rules. For example, ordinary (RG) is
derivable in H-K+

H@. Sometimes (see e.g. [35]) different nonstandard rules
are applied, particularly useful for completeness proof and when @ is not
present.

Lemma 11.4 The following rules are admissible in H-KH@ (or derivable
in H-K+

H@):

(NAME′) � i→ ϕ / � ϕ, provided i /∈ ϕ
(PASTE) � @i♦j ∧ @jϕ→ ψ / � @i♦ϕ→ ψ,

provided i �= j and j /∈ ϕ,ψ

For the sake of illustration we put the proof of derivability of (NAME′)
in H-K+

H@ (by (NAME))

1. � i→ ϕ (Premise, i /∈ ϕ)
2. � @i(i→ ϕ) (1, RG@)
3. � @ii→ @iϕ (2,K@)
4. � @ii (Ref@)
5. � @iϕ (3, 4,MP )
6. � ϕ (1, 5, NAME)

These rules may be used instead of (BG) and (NAME). Moreover,
(PASTE) is deductively stronger than (BG) because we may not only show
the derivability of this rule by (PASTE), but also deduce one of the axioms
from our basis, namely Back.
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It is also possible to axiomatize KH – the set of all valid formulae in
LH. We should add to axioms of H-K only one (scheme of) axiom:

Nom ♦n(i ∧ ϕ) → �m(i→ ϕ) for n,m ≥ 0

Instead of (RG@) we have (in addition to (MP ), (RG) and (SUB@)) a rule:

(NAMELITE) � ¬i / � ⊥

This rule has rather special character. It is admissible in every consistent
extension of H-KH. Note however that ¬i is not valid on any frame. So the
function of this rule is only to make inconsistent every logic with ¬i added
as an axiom.

If we want an axiomatization of H-KH which is an analogon of H-K+
H@

we should add (NAME′) and the following @-free version of (PASTE):

(PASTE′) � ♦n(i ∧ ♦(j ∧ ϕ)) → ψ / � ♦n(i ∧ ♦ϕ) → ψ, for n ≥ 0
provided i �= j and j /∈ ϕ,ψ

In fact, (NAMELITE) is a special case of (NAME′) with ϕ = ⊥, so
we can get rid of this rule in the extended axiomatization.

11.4 General Completeness Results

Now we are able to state rather general completeness theorem for consider-
able number of extensions of H-K+

H@ (or H-K+
H) obtained with the help of

pure axioms.

Theorem 11.2 (Pure completeness) Let Γ be any set of pure formulae,
then H-K+

H@ + Γ is strongly complete for the class of frames defined by Γ.

We will sketch a completeness proof. It is a mix of modal and first-
order ideas – essentially a combination of canonical model construction and
witnessed Henkin method. In addition to usual concepts of consistent and
maximal sets we need:

Definition 11.1

• Γ is named iff it contains at least one nominal (it is the name of Γ)
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• Γ is ♦-saturated iff for all @i♦ϕ ∈ Γ, there is a nominal j such that
@i♦j ∈ Γ and @jϕ ∈ Γ

These additional concepts play an important role in suitable modifica-
tion of Lindenbaum construction.

Lemma 11.5 (Lindenbaum) Every H-K+
H@ + Γ-consistent set can be ex-

tended to a named, ♦-saturated, maximal, H-K+
H@ + Γ-consistent set.

A sketch of a proof: Similarly as in the Henkin proof for first-order
logic we must supply a countably infinite set of new nominals, its arbitrary
enumeration and some enumeration of all formulae in the extended (by
new nominals) language. The procedure of extending our consistent set is
mostly standard, by addition of each new formula which does not lead to
inconsistency. Two points should be noticed:

• In order to get a named set in the first step of the construction we
add the first new nominal. By (NAME′) this set must be consistent.

• In order to get ♦-saturated set, every time we add in a consistent way
a formula of the type @i♦ψ we add also @i♦j and @jψ, where j is a
new nominal (witness). By (PASTE) such an extended set must be
also consistent.

Obviously, the union of all so generated sets satisfies postulated conditions.

We do not use canonical model construction from ordinary modal logic,
where states are simply (all) maximal consistent sets. Here one set is enough
and the states of this model are built up from equivalence classes of nominals
from this maximal consistent set. Formally:

Definition 11.2 (Henkin Model) Henkin Model for H-K+
H@+Γ-maximal,

consistent set Δ is defined as MΔ = 〈 WΔ,RΔ, VΔ〉 where:
WΔ = {| i |: i is a nominal }, where | i |= {j : @ij ∈ Δ}
RΔ(| i |, | j |) iff @i♦j ∈ Δ
VΔ(p) = {| i |: @ip ∈ Δ}
VΔ(i) = {| i |}

By (almost) ordinary inductive argument we obtain:
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Lemma 11.6 (Truth Lemma) @iϕ ∈ Δ iff MΔ, | i | |= ϕ

A sketch of a proof: One should note that because we make an induction
on the formula which on one side of the equivalence is changed into sat-
formula we must apply suitable axioms or theses. For example, if ϕ is a
negation we must use Selfdual@, if it is an implication we must use K@
and ConvK@, if it is a sat-formula we need Agree and if it is a diamond-
formula we need Bridge.

As a result of this construction we obtain a lemma which gives us auto-
matically general completeness for every set of pure formulae that defines
some frame conditions.

Lemma 11.7 (Frame Lemma) If Δ is ♦-saturated H-K+
H@ +Γ-maximal,

consistent set, then the frame of MΔ satisfies all properties defined by Γ.

It is obvious since Δ is named and contains all instances of Γ, so on the
frame of this model all elements of Γ are valid. Hence, pure completeness
theorem follows in a standard way. This result leads to better completeness
theory due to more general theory of frame definability than standard modal
logic provides. The following table lists some examples:

Pure axioms
Name Axiom Frame-condition
D′ �i→ ♦i Seriality (successors)
DC ′ ♦i→ �i Almost functionality
T ′ �i→ i Reflexivity
�T ′ �(�i→ i) Almost-reflexivity
Irr i→ �¬i Irreflexivity
4′ �i→ ��i Transitivity
4C ′ ��i→ �i Density
Intr ¬�i→ ��i Intransitivity
B′ i→ �♦i Symmetry
As i→ ��¬i Asymmetry
Ant i→ �(♦i→ i) Antisymmetry
5′ ♦i→ �♦i Euclideaness
Un ♦i Universality
H3′ �(�i→ j) ∨ �(�j → i) Strong (right) connectedness
HL′ �(�i ∧ i→ j) ∨ �(�j ∧ j → i) Weak (right) connectedness
Dich @i♦j ∨ @j♦i Dichotomy
Tri @i♦j ∨ @j♦i ∨ @ij Trichotomy
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Note in particular that:

1. Many conditions from the table are not definable in LM e.g.: irreflexiv-
ity, intransitivity, asymmetry, antisymmetry, universality, dichotomy
and trichotomy.

2. All conditions except dichotomy and trichotomy are definable in LH.

For the sake of illustration we will show that Irr defines irreflexivity. As-
sume that R is irreflexive but Irr is not valid, so in some w we have w � i but
w � �¬i. So in some accessible w′ we have w′ � i but then w = V (i) = w′

which contradicts the assumption of irreflexivity. Now assume that Irr is
valid in the frame where, for some w, Rww. Let V (i) = w (recall that
canonical model is named!), so w � i and w � i → �¬i. But if w � �¬i,
then w � i – contradiction.

One should note that this result is also in a sense simpler than celebrated
Sahlqvist completeness theorem. The criteria for being Sahlqvist formula
are rather complicated whereas the requirement of purity is extremely sim-
ple. But there are also some considerable limitations – pure-formulae define
only first-order properties but still not all of them!

That second-order properties are not definable by pure formulae should
be clear if we look at how standard translation works. For LH@ we add two
clauses to the definition of STx from Section 5.4.3:

STx(i) = x = ci
STx(@iϕ) = ∃y(y = ci ∧ STy(ϕ))

where ci is an individual constant and x, y are distinct variables not occuring
in ϕ.

Lemma 5.2 still holds but recall that second-order quantification deals
only with monadic predicates being standard translation of propositional
variables from translated formula. But there are no such variables in pure
formulae; nominals, despite their syntactic category, play the role of names
and in enriched standard translation are mapped onto first-order individual
constants. In consequence, every condition definable by pure formula must
be elementary. Of course, second-order properties definable in standard
modal languages are also expressible in hybrid languages, since trivially the
former are contained in the latter, but they are not expressible by pure
formulae.
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But which first order properties are definable and which are not definable
in the basic hybrid language? In particular, which are definable by pure
formulae? Balder ten Cate [273] provides the following characterization
theorems:

Theorem 11.3 An elementary class of frames is definable by formulae of
LH@ iff it is closed under ultrafilter morphic images and generated sub-
frames.

Theorem 11.4 A class of frames is definable by pure formulae of LH@ iff
it is elementary and closed under images of bisimulation systems.

For suitable definitions and details of proofs one should consult [273].
Here we discuss some concrete negative examples of definability in LH@.
For instance, not all Sahlqvist formulae have pure formulae equivalents, e.g.
Church-Rosser property), predecessors, right- (left)-directedness.

• Church-Rosser property – ∀xyz(Rxy ∧ Rxz → ∃v(Ryv ∧ Rzv)) is
defined in LM by axiom 2 : ♦�ϕ → �♦ϕ, but ♦�i → �♦i doesn’t
work.

• Predecessors – ∀x∃yRyx which is not defined in LM either (although
the converse, namely seriality, is defined by D and both properties are
definable in LT).

• Right-directedness – ∀xy∃z(Rxz ∧Ryz) is not definable in LM. Note
that it is definable in LH@ by @i�p→ @j♦p, but it is not a pure for-
mula so pure completeness theorem does not apply. Left-directedness
is undefinable in LH@ too.

As a result we have a strange situation. For hybrid logics in LH@ we have
both: pure completeness, and

Theorem 11.5 Hybrid Sahlqvist completeness: Let Γ be any set of
Sahlqvist-formulae, then H-K+

H@ + Γ is strongly complete for the class of
frames defined by Γ.

But completeness fails for some combinations of pure and Sahlqvist for-
mulae! e.g. H-K+

H@ + 2 + NG is incomplete, where NG is ♦(i ∧ ♦j) →
�(♦j → i) and defines the following condition:

∀xyzu(Rxy ∧Rxz ∧Ryu ∧Rzu→ y = z) (11.2)
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Fortunately, the situation slightly changes when we move to hybrid tense
language.

It would be also interesting to know if we could obtain an axiomatization
which is sufficient for obtaining pure completeness theorem but which is
more standard, in the sense that rules like (BG) or (PASTE) are derivable.
As we shall see it is possible in case of stronger languages, at least partly –
for instance (BG) is derivable in H-KtH@ (but with the help of (NAME)
however). Full elimination of nonstandard rules is possible when we have a
local binder ↓ in a language, but in the case of basic language the presence
of such rules is not incidental, which was shown in [40].

11.5 Hybrid Tense Logic

11.5.1 Impact of Past Operators

Hybrid tense logic shows some important differences with modal hybrid
logic. It is easy to check that LTH@ (and even LTH)is strictly more expres-
sive than LH@. In particular, three points should be stressed:

1. @ is in principle dispensable in the presence of past-operators, e.g.
trichotomy may be defined by Pi ∨ i ∨ Fi. But it does not mean that @
is simply definable. Areces [9] shows that @ is eliminable in LTH@↓ from
all nominal-free sentences. A different way of simulating the effect of sat-
operators in LTH is shown in Demri’s sequent calculus [78] (see the section
on sequent calculi in Chapter 12).

2. Some frame-conditions undefinable in LH@ by pure formulae (al-
though definable in LM) are definable by means of tense operators, e.g.
Church-Rosser property (or directedness) is defined by Fi ∧ Fj → F (i ∧
FPj).

3. Some frame-conditions are definable that are not definable in any of
LM, LT, LH@, e.g.:

• left directedness: ∀xy∃z(z < x ∧ z < y) is defined by PFi

• right discreteness: ∀xy(x < y → ∃z(x < z ∧ ¬∃v(x < v < z))) is
defined by @i(F� → FHH¬i) (or i→ (F� → FHH¬i))

In fact, every Sahlqvist formula has a pure formula equivalent in LTH@ (see
[115]), so we have:
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Theorem 11.6 (Sahlqvist/pure completeness) Let Γ be any set of pure
or Sahlqvist formulae, then H-Kt+

H@ + Γ is strongly complete for the class
of frames defined by Γ.

H-Kt+
H@ is similar to H-K+

H@ – we simply replace the axioms of H-K
by the axioms of H-Kt and replace (RG) by two tense versions for G and
H respectively. But some changes are possible, namely:

1. We can use one pure axiom @iFj ↔ @jPi instead of two standard
interaction axioms from H-Kt: p→ GPp and p→ HFp.

2. If we add two axioms: @iGPi and @iHFi we can derive both (for G
and H) tense versions of (BG).

Hence, in the completeness theory we can avoid some strange features
of LH@ but there are some disadvantages – KtH@ is still decidable but
EXPTIME-complete, whereas Kt is in PSPACE (as K and KH@). So
the (basic) hybrid tense logic is more complex than ordinary tense logic Kt.

11.5.2 Tenses

A research on hybrid tense logic opens also a new perspective for formaliza-
tion of English language tenses. Blackburn [31] has noticed that standard
Priorean LT already has a deictic nature but shows strong limitation in ex-
pressing language tenses. LTH@ yields referential perspective which makes
possible to express Reichenbachian analysis of tenses in terms of three time
points. The table lists the details

Reference Tense Example Formula
E-R-S Pluperfect I had seen P (i ∧ Pϕ)
E,R-S Past I saw P (i ∧ ϕ)
R-E-S Future-in-the-Past I’d see P (i ∧ Fϕ)
R-S,E Future-in-the-Past I’d see P (i ∧ Fϕ)
R-S-E Future-in-the-Past I’d see P (i ∧ Fϕ)
E-S,R Present perfect I’ve seen Pϕ
S,R,E Present I see ϕ
S,R-E Prospective I’m going to see Fϕ
S-E-R Future perfect I’ll have seen F (i ∧ Pϕ)
S,E-R Future perfect I’ll have seen F (i ∧ Pϕ)
E-S-R Future perfect I’ll have seen F (i ∧ Pϕ)
S-R,E Future I’ll see P (i ∧ ϕ)
S-R-E Future-in-the-Future (Latin: abiturus ero) F (i ∧ Fϕ)
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where:
S – the point of speech
E – the point of event
R – the point of reference

[31] contains also other applications of hybrid tense languages to the
analysis of language temporal phenomena like indexicals, anaphora, calen-
dar terms. Other papers of Blackburn undertake the problem of extending
the expressive power of hybrid language to cover interval based temporal
languages, but this requires substantial changes in hybrid machinery by in-
troducing further sorts of atoms (see e.g. [30]). Nevertheless, for many
purposes even hybrid languages with backward-looking operators are still
too weak. In what follows we describe briefly the most popular extensions.

11.6 Language Extensions

Although the basic hybrid language offers many improvements over standard
modal language it has still strong limitations which may be overcome by
further strengthenings. Moreover, some of them were historically the first
forms of hybrid languages. Below, we consider some of the most important
languages and their expressive hierarchy. We describe in particular:

• Extra modalities

1. Global modalities

2. Difference modalities

• Modal Binders

1. Local binder

2. Quantifiers

It should be stressed that early works on hybrid logics, in particular from
Sofia school (like Gargov [102] or Goranko [114]), were concerned with
stronger languages than those we presented so far. Studies on the basic
and weak hybrid language started later in the middle of 1990s. In this
paragraph we briefly recall two, surprisingly strong solutions.
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11.6.1 Global Modalities

One of the popular solutions, not necessarily connected with hybrid logic
is to use the so called global modalities. Notes to the last Chapter of [35]
include interesting historical information on their use. They are called global
because they are not characterised by accessibility relations but defined by
reference to any state in a model. We use A (from Aristotle or “always”)
for universal (global) modality and E for its dual. Semantically they are
defined as follows:

M, w � Aϕ iff M, w′ � ϕ for any w′

M, w � Eϕ iff M, w′ � ϕ for some w′

Let LH@A denote LH@ with universal modality A or (interdefinable)
existential modality E . Notice that LHA = LH@A since @ is definable:

@iϕ := A(i→ ϕ) := E(i ∧ ϕ) (11.3)

So, in the presence of global modality, the difference between LH and
LH@ disapears and LHA is at least as expressive as LH@. In fact, hybrid
languages with A are strictly stronger which is evident if we consider com-
putational behaviour of KHA.

KHA is also decidable but global modalities are very strong. Even KA –
the basic logic of A in the standard language (no nominals) is EXPTIME-
complete [125]. But if we add nominals, the situation does not change. Even
if we add A to hybrid tense logic we still have EXPTIME-completeness,
so both KHA and KtHA are in the same complexity class as plain KA.
Hence, at least from the point of view of complexity of KtH, we do not
loose anything if we add global modalities. But, when compared with KH@

(and if standard beliefs concerning relations between complexity classes are
right), the satisfiability problem for hybrid logic with A is harder.

A complete axiomatization of KHA=KH@A may be obtained by addi-
tion of the following axioms to H-KH:

DualA Ep↔ ¬A¬p
KA A(p→ q) → (Ap→ Aq)
TA Ap→ p
BA p→ AEp
4A Ap→ AAp
Incl♦ ♦p→ Ep
Incli Ei
NomA E(i ∧ p) → A(i→ p)
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Clearly, to the set of rules of H-KH we must add:

(RGA) � ϕ / � Aϕ

If we want to strengthen H-KHA in order to get H-K+
HA, a formalization

suitable for general pure completeness theorem, we must add (NAME′)
and:

(BGE) � E(i∧♦j) → E(j ∧ϕ) / � E(i∧�ϕ), provided i �= j and j /∈ ϕ

In the set of axioms, formulae DualA − 4A simply reflect the fact that
global modalities are normal S5-modalities. Interesting cases are the last
three axioms. Alternatively, we could add just Incli to H-K+

H since the rest
of the axioms is derivable.

11.6.2 Difference Modality

Another kind of modality very popular in early works on hybrid logic (see
e.g. [102]) is the difference modality. In fact, it was firstly introduced in
the context of ordinary modal languages (again, see the notes in [35]). Let
LMD denote LM with difference possibility D or (interdefinable) difference
necessity D̄ defined as follows:

M, w � Dϕ iff M, w′ � ϕ for some w′ �= w
M, w � D̄ϕ iff M, w′ � ϕ for any w′ �= w

Note that LMD is strictly stronger than LMA since A is definable by D̄
but not conversely:

Aϕ := ϕ ∧ D̄ϕ (11.4)

In fact, difference modality is so strong, that in LMD we can even sim-
ulate nominals on the basis of the following definition: p is true at exactly
one point iff Ep ∧ A(p→ ¬Dp) holds.

On the other hand, with respect to frame definability LHA is as expres-
sive as LMD, so addition of D to LHA does not change its strength. The
interested reader should consult [102] or [8] for details.

As a result of these language interdependencies we have the following
hierarchy of expressivity:



384 CHAPTER 11. MODAL HYBRID LOGICS

LMA < LMD = LMAD = LHAD = LHA = LH@A (11.5)

We can obtain complete formalization of hybrid logic with D very simply.
It is enough to add pure axiom Di↔ ¬i to H-K+

H@.

In this section we consider only the expressive power of hybrid languages
on the set of all frames. Interesting results concerning selected classes of
frames will be mentioned later but one fact should be noticed here. One can
easily check that Dϕ is definable in Kt4.3 (the basic tense logic of linear
frames) by Pϕ ∨ Fϕ, so on linear frames LTH@,LTHD and LT have the
same expressivity.

11.6.3 Modal Binders

The applications of special modalities described in the last section do not
have particularly hybrid character. They were considered independently of
investigations on hybrid logic and their importance for this field is connected
with nice interplay of these modalities with hybrid machinery. But hybrid
languages lead to specific enrichments; if we can name states in a model we
can ask why not to quantify over states? So the next step is:

• add the third sort of atoms SV AR = {u, v, ...} (state variables) to the
basic hybrid language

• add some binders – quantifiers ∀,∃ or local binder ↓

In fact, the application of quantifiers is present in the earliest approach to
hybrid logic due to Prior [225]. His third grade tense logic uses both nomi-
nals (or rather state variables) and ∀. A local binder ↓ was invented much
later and – in contrast to quantifiers borrowed from first-order language – is
essentially hybrid concept, although some forms of it were applied outside
MHL earlier (see Blackburn [38] for some historical remarks and Goranko
[114] for the first application in hybrid languages). By the way: the ap-
plication of binders (in particular quantifiers) is one of the sources of the
name “hybrid” meant as a combination of propositional modal language
and quantification.

An addition of the third sort of atoms is strictly speaking not necessary
but it is easier to have distinct state symbols: nominals and variables. The
situation is in a sense analogous to that in typical Gentzen-style proof theory
for first-order logic, where we distinguish bound occurrences of variables
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and free occurrences (parameters) (cf. Chapter 3). But note that free state
variables will be also admitted. The definitions of free and bound occurences
of (state) variables, the scope of the binder, the sentence (no free variables)
and other similar concepts, are the exact analogs of the definitions from
first-order language stated in the first Chapter.

The definition of the frame and model is the same as for LH@ but we
need also the concept of an assignment a for M which is a mapping a :
SV AR −→ W . The satisfaction of a formula is now defined for a model
and an assignment. In particular, for the new elements we have the following
conditions:

M, a, w � u iff w = a(u) for any u ∈ SV AR
M, a, w � ∀uϕ iff M, auw′ , w � ϕ for all w′

M, a, w � ∃uϕ iff M, auw′ , w � ϕ for some w′

M, a, w �↓uϕ iff M, auw, w � ϕ

where auw is an u-variant of a, namely, for any v ∈ SV AR:

auw(v) :=

{
w if v = u

a(v) if v �= u

We should also admit free state-variables as arguments of @, so the more
general condition is:

M, a, w � @sϕ iff M, a, w′ � ϕ where s ∈ NOM ∪ SV AR and: {w′} =
V (s) if s ∈ NOM , or w′ = a(s) if s ∈ SV AR

Truth clauses show that we have the exact hybrid analogs of first-order
quantifiers, but ↓ needs some comment. The difference between ↓ and ∀
is between local and global binding. ↓ enables to name a current state (↓
binds state variable to current state). Note also that ↓ is self-dual.

Let LH∀,LH↓,LH↓∀ denote weak hybrid languages with added binders
and LH@∀,LH@↓,LH@↓∀ respective languages with satisfaction operators.

Theorem 11.7 LH@∀ is strictly stronger than LH@↓, since:

1. ↓ is definable in LH@∀: ↓uϕ := ∃u(u ∧ ϕ) but

2. LH@↓ is preserved under generated submodels, whereas LH@↓∀ is not.

(obviously the same applies to LH∀,LH↓)
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Theorem 11.8 LH@∀ = LH@↓∀ and LH∀ = LH↓∀

In contrast to weak hybrid language with A, @ is not definable in LH∀.
But if we add A to languages with binders we can obtain the interesting
interdefinability results stated below as:

Theorem 11.9 LH@∀ = LH↓A = LH∀A = LH@↓A = LH@∀A

Some of the equations are obvious if we remember that A defines sat-
operator, moreover:

1. ∀ is defined in LH↓A: ∀uϕ :=↓vA ↓uA(v → ϕ), where v /∈ ϕ

and

2. A is defined in LH@∀: Aϕ := ∀u@uϕ, where u /∈ ϕ

As we shall see, the addition of binders strongly increases expressive power
of hybrid languages but there are serious costs. Both basic hybrid logics
with added binders KH@↓ and KH@∀ are undecidable (in fact, even KH∀ is
undecidable!).

11.6.4 Axiomatization

Let H-KH@↓ be axiomatization of KH@↓,1 obtained from H-KH@ by the
addition of:

DA @i(↓uϕ↔ ϕ[u/i])

Clearly, the proviso for the rule of Substitution must be changed a bit to
deal with the presence of states variables. Nominals and state variables
may be substituted for each other but state variables may be substituted
for nominal/(free) state variable only if they are still free. One can easily
prove the self-duality principle:

S-D ↓ ↓uϕ↔ ¬↓u¬ϕ

The addition of (NAME) and (BG) to H-KH@↓ yields H-K+
H@↓. Pure

completeness holds for H-K+
H@↓ exactly as for H-K+

H@. What’s more, we
can axiomatize K+

H@↓ without (BG) and (NAME) but using more standard

1For axiomatization of KH↓ with the use of (COV)-rules, see [38].
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rules (no side conditions). Just add to H-KH@↓ the following axioms and
rules:

Name ↓ ↓u(u→ ϕ) → ϕ , provided u /∈ ϕ
BG ↓ @i�↓u @i♦u
(RG ↓) � ϕ / �↓uϕ

We can axiomatize the set of all validities in the strongest hybrid lan-
guage just by adding to H-K+

H@ the following axioms:

Q1 ∀u(ϕ→ ψ) → (ϕ→ ∀uψ), where u /∈ V F (ϕ)
Q2 ∀uϕ→ ϕ[u/s],

where if s is a state variable it is free for u in ϕ
Barcan@ ∀u@iϕ↔ @i∀uϕ

and

(Gen) � ϕ / � ∀uϕ

However, this system uses nonstandard rules (NAME) and (BG), and
we already remarked that even in LH↓ we can avoid them completely. In
LH∀@ we can eliminate these rules in favor of two additional axioms:

Name∃ ∃uu
Barcan� ∀u�ϕ↔ �∀uϕ

This is possible also in LH∀. Suitable axiomatic system H-KH∀ consists
of axioms and rules of H-KH@∀ without Barcan@, but with:

Nom ∀u(♦m(u ∧ ϕ) → �n(u→ ϕ)), m, n ∈ ω

All these axiomatizations are strongly complete for respective logics.

11.6.5 Expressivity

In fact, ↓,∀,∃ are not the only binders considered in hybrid languages.
Below we consider briefly some strong versions of quantifiers and local binder
considered in [37].

M, a, w � Πuϕ iff M, auw′ , w′ � ϕ for all w′

M, a, w � Σuϕ iff M, auw′ , w′ � ϕ for some w′

M, a, w �⇓uϕ iff M, auw, w
′ � ϕ for some w′
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where auw is an u-variant of a.

If we add to LH any of these binders we obtain the following hierarchy:

LH↓ < LH∃ < LH⇓ and LHA < LHΣ < LH⇓ since:

∃uϕ :=⇓v⇓u(v ∧ ϕ), where v /∈ ϕ

Eϕ := Σuϕ, where u /∈ ϕ

Σuϕ :=⇓v⇓u(u ∧ ϕ), where v /∈ ϕ

but ⇓uϕ :=↓uEϕ, so LH↓A = LH⇓

The use of these binders may be convenient but languages containing
them are not stronger than LH@∀. In the rest of this subsection we focus
on the expressive strength of two central languages with binders: LH@↓ and
LH@∀.

Let us look at the extension of the standard translation function ST from
ordinary modal language to all hybrid languages discussed so far. Following
[13] we may use a version, where nominals/state variables are identified with
first-order constants/variables.

1. Standard Translation STt

STt(s) = t = s
STt(p) = P (t)
STt(¬ϕ) = ¬STt(ϕ)
STt(ϕ ∧ ψ) = STt(ϕ) ∧ STt(ψ)
STt(♦ϕ) = ∃x(R(tx) ∧ STx(ϕ))
STt(@sϕ) = STs(ϕ)
STt(Eϕ) = ∃xSTx(ϕ)
STt(↓uϕ) = ∃u(u = t ∧ STt(ϕ))
STt(∃uϕ) = ∃uSTt(ϕ)
STt(Σuϕ) = ∃uSTu(ϕ)
STt(⇓uϕ) = ∃x∃u(u = t ∧ STx(ϕ))

where x is a variable distinct from term t and not occuring in ϕ.

Pure completeness of H-K+
H@↓ opens the question if we have something

more. There are two points worth noting:
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1. LH@ is more expressive (than LM) at the level of frames but even LH↓
is more expressive at the level of models! For example, we can distinguish
between reflexive and nonreflexive states in a model (↓u♦u and ↓u¬♦u).

2. Binary temporal operators U (Until) and S (Since) are definable in
LH@↓ or LTH↓ :

• U(ϕ,ψ) :=↓u♦↓v(ϕ ∧ @u�(♦v → ψ))

• U(ϕ,ψ) :=↓uF (ϕ ∧H(Pu→ ψ))

Let us recall that U is semantically defined by the following clause:

M, t � U(ϕ,ψ) iff M, t′ � ϕ for some t′ such that t < t′ and M, t′′ � ψ
for every t′′ such that t < t′′ and t′′ < t′

Notice by the way that U or S may be locally defined also in LTH@ in
the following way:

@i(U(ϕ,ψ) ↔ F (ϕ ∧H(Pi→ ψ))) (11.6)

In fact, we can establish exactly the expressive power of LH@↓ on the
level of models and frames. As for the first it holds [9]:

Theorem 11.10 A formula of first-order correspondence language ϕ is
equivalent to standard translation of a sentence in LH@ iff ϕ is equivalent
to strongly bounded formula.

Recall that strongly bounded fragment of first-order language covers
all formulae built up from atoms with the help of boolean constants and
bounded quantification (i.e. ∃y(Rxy ∧ ϕ) and ∀y(Rxy → ϕ)). This is the
fragment of first-order language which is invariant under generated submod-
els. Concerning frame definability we have:

Theorem 11.11 An elementary class of frames is defined by pure sentences
of LH@↓ iff it is closed under generated subframes and reflects finitely gen-
erated subframes.

But the class of elementary frames definable in ordinary modal language
is closed under generated subframes and reflects point-generated subframes,
so LH@↓ covers all this class (Sahlqvist formulae in particular). For example,
Church-Rosser property is definable in LH@↓ by pure formula:
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♦i ∧ ♦j → @i(♦↓u@j♦u) (11.7)

On the other hand, some elementary conditions not definable in LM like
Predecessors (∀x∃yRyx) are not definable by pure formulae in LH@↓ either
(since the class of frames with this property is not closed under generated
subframes).

So far we have pointed out limitations of several hybrid languages when
compared with the expressive strength of first-order language. But LH@∀
has the full first-order language expressivity. It is obvious, because now we
can directly rewrite any first order formula as a formula of LH@∀. Formally,
we can define some translation function, first introduced by Prior:

Hybrid Translation HT

HT (Rtt′) = @t♦t′
HT (Pt) = @tp
HT (t = t′) = @tt

′

HT (¬ϕ) = ¬HT (ϕ)
HT (ϕ ∧ ψ) = HT (ϕ) ∧HT (ψ)
HT (∃uϕ) = ∃uHT (ϕ)

Because of the full first-order expressive power, in case of H-KH@∀ we
need only the basic completeness theorem.

The definition of HT makes obvious why LH@∀ is strictly stronger than
LH∀. It is important to note that the use of satisfaction operators are
essential in the translation. The addition of quantifiers to the weak hybrid
language does not yield the full first-order expressivity which at first sight
may seem strange.

Note in particular, that all properties not expressible as pure formulae in
LH@ (e.g. Geach axioms, directedness) are expressible in LH@∀ as PUENF-
formulae (pure universal existential nominal-free formulae) of the shape:
∀u1, ..., um∃v1, ..., vnϕ, where ϕ has no quantifiers, propositional variables,
nominals (only state variables). e.g.:

• Church-Rosser property –
∀u1u2u3∃v(@u1♦u2 ∧ @u1♦u3 → @u2♦v ∧ @u3♦v)

• Predecessors – ∀u∃v,@v♦u

• Right-directedness – ∀u1u2∃v(@u1♦v ∧ @u2♦v)
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Theorem 11.12 A frame condition is defined by PUENF-formula iff it is
UE-closure of strongly bounded first-order formula.

Blackburn [40] stated a conjecture that every Sahlqvist formula is ex-
pressible by PUENF-formula. PUENF-formulae are quite interesting since
they lead to stronger completeness result for H-K+

H@ (see [41]). First note
the following:

Theorem 11.13 Every PUENF-formula PF ∀u1, ..., um∃v1, ..., vnϕ corre-
sponds to existential saturation rule (RPF) of the form:

If � ϕ[u1/i1, ..., um/im, v1/j1, ..., vn/jn] → ψ, then � ψ,

provided j1, ..., jn are distinct, unequal to i1, ..., im and do not occur in ψ

For example, for Church-Rosser property we have the rule:

If � (@i1♦i2 ∧ @i1♦i3 → @i2♦j ∧ @i3♦j) → ψ, then � ψ, provided j /∈ ψ
and j �= i1, i2, i3

RPF-rules closely resemble Gabbay’s style nonstructural rules for unde-
finable (in standard ML) conditions. They arise in the effect of skolemiza-
tion of state variables with the help of nominals in PUENF-formulae. The
relation between formulae and rules is clarified in the following:

Lemma 11.8 If PF defines F , then (RPF) is admissible in F

As a consequence we can prove much stronger completeness result for
logics in the basic language.

Theorem 11.14 (Extended Pure Completeness) Let Γ be any set of
pure formulae and R any set of existential saturation rules, then H-K+

H@ +
Γ +R is strongly complete for the class of frames defined by Γ and R.

Note that addition of existential saturation rules may also strengthen
the scope of the pure completeness theorem for H-K+

H@↓.
One should note that the concept of such nonstandard rules enriching

seriously the expressive power of LH@ was first independently explored on
the field of tableau methods (see Blackburn [40]) and HRND (RND for
hybrid logics) in Indrzejczak [148]). Some details will be given in the next
Chapter.
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11.7 Miscellanea

There are many developments of MHL that we did not even touch. In par-
ticular, interesting results concerning expressivity may be obtained not only
by adding new constants but also by multiplying sorts of atoms. Multisorted
hybrid languages and their application to analysis of linguistic phenomena of
tensal discourse were investigated by Blackburn (see e.g. [31, 34]). One can
find there, e.g. a hybrid formalization of interval tense logic with two sorts
of nominals, denoting instants and intervals. Below we describe briefly the
extension of propositional hybrid logic to first-order modal hybrid logic. We
also bring together the most basic facts concerning decidability, complexity
and interpolation in MHL.

11.7.1 First-Order Modal Hybrid Logic QMHL

The number of papers devoted to first-order hybrid logic is rather small but
the effects of such extensions obtained so far are quite promising. The use
of hybrid languages makes possible to obtain interesting results concerning
the formalization of nonrigid terms and expressing various conditions put
on the domains of models. Moreover, we will see that first-order hybrid
logic is particularly good behaved with respect to interpolation property.

Below we present a logic QMHL, a first-order version of LH@↓ from
Blackburn [36].

1. Vocabulary of LH@↓ is enriched with:

• denumerable set of first order variables V AR = {x, y, ...}

• denumerable set of rigid constants CON = {c1, c2, ...}

• denumerable set of nonrigid constants FUN = {f1, f2, ...}

• denumerable set of predicate symbols of n-arity PRED = {P1, P2, ...}

• first-order (possibilistic) quantifiers and equality predicate: ∀,∃,=

2. the set of terms contains V AR,CON , and is closed under the rule:

• if f ∈ FUN and s ∈ NOM ∪ SV AR, then @sf is a term

Note! sat-operator is used to form both formulae and terms which is
very hybrid solution indeed! In case of terms this is the way for rigidifica-
tion of nonrigid terms. Let me remind you that nonrigid terms vary their
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denotation in different worlds, whereas rigid terms have the same denotation
in all worlds. When sat-operator is attached to nonrigid term f it means:
the designate of f in s, and this compound term has a constant value. This
informal remark will become obvious after introduction of semantics.

3. Models are structures of the form M = 〈 W,R, D, V 〉, where D is a
nonempty constant domain and V is defined as follows:

– V (c) ∈ D

– V (i) ∈ W
– V (Pn) ⊆ Dn ×W
– V (f) ∈ DW

An assignment a = an∪af , where an : SV AR −→ W and af : V AR −→ D.

The interpretation I of the term τ in a model and under an assignment
is defined as follows:

I(τ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a(τ) if τ ∈ V AR

V (τ) if τ ∈ CON

V (f)(V (i)) if τ = @if for i ∈ NOM and f ∈ FUN

V (f)(a(v)) if τ = @vf for v ∈ SV AR and f ∈ FUN

The new clauses for satisfaction are:

M, a, w � Pn(τ1, ..., τn) iff 〈I(τ1), ..., I(τn), w〉 ∈ V (Pn)
M, a, w � τ1 = τ2 iff I(τ1) = I(τ2)
M, a, w � ∀xϕ iff M, axo , w � ϕ for all o ∈ D

M, a, w � ∃xϕ iff M, axo , w � ϕ for some o ∈ D

The version of the semantics we have presented has the constant do-
main and possibilistic quantifiers just for simplicity. But we can also add
the function d : W −→ P(D) and introduce actualist quantifiers – this is
easy. One can do that either indirectly in the manner described in Fitting
[96], by introducing existence predicate and relativization of quantifiers to
this predicate, or directly by treating actualist quantifiers as primitive. The
second route is taken in Blackburn [41], where an axiomatization of QMHL
in LH@ is presented which satisfies general pure completeness theorem. In-
terestingly enough, it covers not only frame conditions definable by pure
axioms (and saturated rules) but also extensions obtained by considering
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several domain conditions, because they may be expressed by pure axioms.
For example, popular conditions ordinarily defined with the help of Barcan
Formula and its converse, like monotonicity or antymonotonicity are defined
as follows:

(MON) E@ic→ �E@ic
(AMON) ♦E@ic→ E@ic

Where E is existence predicate defined in a standard way: Eτ := ∃x, x = τ
and x �= τ . Constant domain is expressed even simpler by @iE@jc →
@kE@jc. Moreover, some other, less known, conditions may be expressed,
e.g.:

Full domains E@ic
Disjoint domains @iE@jc ∧ @kE@jc→ @ik
Convex domains E@ic→ �(♦E@ic→ E@ic)

Note that hybrid version of QML allows of simple form of representation
of nonrigid terms which in ordinary modal language lead to some troubles.
Here is an example: let c = Caroline (rigid term in Kripke spirit) and f =
Miss of America (clearly nonrigid term), then the sentence “Caroline is the
present Miss of America” is expressed by ↓u(c = @uf). One can check that:

|=↓u(c = @uf) →↓uG(c = @uf)

but

�|=↓u(c = @uf) → G↓u(c = @uf)

And this is in accordance with our expectations, since the first means:
“If Caroline is the present Miss of America, then it always be the case, that
she is the Miss of America of now”, which is obviously true. On the other
hand, the second means: “If Caroline is the present Miss of America, then it
always be the case, that she will be the Miss of America”, which is obviously
false.

11.7.2 Decidability and Complexity

During the discussion of several hybrid languages and logics, we accidentally
made some remarks concerning decidability and complexity of them. It
is helpful to collect these remarks and add some more in order to get a
fuller picture. We consider only the question of decidability for satisfiability
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problem. It’s easy to note that there are three possible effects of changing
ordinary modal theories into hybrid theories. We can have:

1. The same complexity class e.g. KH@

2. Worse behaviour e.g. KtH@

3. Better behaviour – logics of some frame classes.

The last point is particularly interesting and we list some striking examples.

Some concrete results.

1. Bad impact of past operators:

Even KtH with one nominal is EXPTIME-complete, whereas Kt is
PSPACE-complete. The same applies also to monomodal hybrid logics
of symmetric frames. On the other hand, an addition of @ and A do not
change the complexity, whereas in ordinary modal language it also jumps
to EXPTIME.

2. Transitive frames:

Hybrid modal logics of transitive frames are in PSPACE even with A
(recall that KHA is EXPTIME-complete). But Kt4H is still EXPTIME-
complete.

3. Linear frames:

The best results we have for hybrid logics of linear frames. They are
NP -complete even with ↓! Note that even KH↓ is undecidable but on linear
frames we have not only decidability but also of relatively low complexity
since in this respect it is as good as CPL.2

11.7.3 Interpolation and Beth Definability

Hybrid logics show also remarkable advantages over standard modal logics
with respect to interpolation properties. Let’s recall the basic definitions in
the form suitable for hybrid languages.

2Perhaps we should rather say as bad as CPL, if we remember that only P-complete
problems are considered as practically tractable.
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Definition: L has the Strong Interpolation property iff: |=L ϕ → ψ
implies that |=L ϕ → χ and |=L χ → ψ for some χ such that P (χ) ⊆
P (ϕ) ∩ P (ψ).

Definition: L has the Weak Interpolation property iff: ϕ ||= ψ implies
that ϕ ||=L χ and χ ||=L ψ for some χ such that P (χ) ⊆ P (ϕ) ∩ P (ψ).

Note that we can obtain several forms of interpolation property for MHL
if we change the meaning of P . If it is the set of propositional variables, it
is a standard notion from ML, but we can consider also the version where
P covers additionally the set of nominals, or of only nominals.

The relation between the two concepts is the following:

Theorem 11.15 If |= is compact, then strong interpolation implies weak
interpolation.

For the two most important basic hybrid logics we have:

Theorem 11.16 KH@↓ has strong interpolation; KH@ has only weak in-
terpolation.

An example: there is no interpolant for i ∧ ♦i → (j → ♦j) but if we
limit P to propositional variables only, then strong interpolation holds also
for KH@ and for KH. These results extend to Beth definability in case of
KH@, since in order to derive this property we need only interpolation with
P limited to propositional variables. But, surprisingly enough, it does not
hold for KH (see [273])!

There is an interesting relation between decidability and interpolation
which is expressed by the following two theorems:

Theorem 11.17 Every hybrid logic formulated in extension of LH either
is decidable or has strong interpolation (over nominals).

Theorem 11.18 KH@↓ is the least logic with strong interpolation; any ex-
tension axiomatizable by a set of nominal-free sentences also has this prop-
erty.

A good behavior of QMHL in LH@↓ is particularly worth mentioning.
The following theorem holds:
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Theorem 11.19 Strong interpolation (and Beth definability) holds for any
QMHL between K and S5.

This is in strong contrast to ordinary QML where we have the following
negative result due to Fine:

Theorem 11.20 Interpolation fails for any QML between K and S5 with
constant domains and for S5 with varying domains.
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[57] Braüner, T. 2009. Hybrid logic. In Handbook of philosophical logic,
2nd ed., vol XVI. New York: Springer, to appear.

[58] Bull, R. 1970. An approach to tense logic. Theoria 36: 282–300.

[59] Bull, R., and K. Segerberg. 1984. Basic modal logic. In Handbook of
Philosophical Logic, eds. D. Gabbay, and F. Guenthner, vol II, 1–88.
Dordrecht: Reidel Publishing Company.

[60] Burgess, J.P. 1984. Basic tense logic. In Handbook of philosophical
logic, eds. D. Gabbay, and F. Guenthner, vol II, 89–133. Dordrecht:
Reidel Publishing Company.

[61] Carnielli, W.A. 1991. On sequents and tableaux for many-valued log-
ics. Journal of Non-Classical Logic 8(1): 59–76.

[62] Castellini, C. 2005. Automated reasoning in quantified modal and tem-
poral logic, PhD thesis, University of Edinburgh.



450 BIBLIOGRAPHY

[63] Castellini, C. and A. Smaill. 2000. A systematic presentation of quan-
tified modal logics. Logic Journal of the IGPL 10: 571–599.

[64] Catach, L. 1991. TABLEAUX: A general theorem prover for modal
logics. Journal of Automated Reasoning 7(4): 489–510, 1991.

[65] Cellucci, C. 1992. Existential instatiation and normalization in se-
quent natural deduction. Annals of Pure and Applied Logic 58: 111–
148.

[66] Cerrato, C. 1994. Natural deduction based upon strict implication
for normal modal logics. Notre Dame Journal of Formal Logic 35(4):
471–495.

[67] Chagrov, A., and M. Zakharyaschev. 1997. Modal logic. Oxford: Ox-
ford University Press.

[68] Chang, C.L., and R.C.T. Lee. 1973. Symbolic logic and mechanical
theorem proving. Orlando: Academic Press.

[69] Chellas, B. 1980. Modal logic. Cambridge: Cambridge University
Press.

[70] Church, A. 1956. Introduction to Mathematical Logic, vol I. Princeton:
Princeton University Press.

[71] Copeland, J.B. 2002. The genesis of possible world semantics. Journal
of Philosophical Logic 31: 99–137.

[72] Copi, I.M. 1954. Symbolic logic, New York: The Macmillan Company.

[73] Corcoran, J. 1972. Aristotle’s natural deduction system. In Ancient
logic and its modern interpretations, ed. J. Corcoran. Dordrecht: Rei-
del.

[74] Corcoran, J., and G. Weaver. 1969. Logical consequence in modal
logic: Natural deduction in S5. Notre Dame Journal of Formal Logic
10: 370–384.

[75] Curry, H.B. 1950. A theory of formal deducibility. Notre Dame: Uni-
versity of Notre Dame Press.

[76] Curry, H.B. 1952. The elimination theorem when modality is present.
Journal of Symbolic Logic 17: 249–265.



BIBLIOGRAPHY 451

[77] Davis, M., and H. Putnam. 1960. A computing procedure for quantifi-
cation theory. Journal of the Association for Computing Machinery 7:
201–215.

[78] Demri, S. 1999. Sequent calculi for nominal tense logics: A step to-
wards mechanization¿ In Tableaux 99, LNAI 1617, ed. N. Murray,
140–154. Berlin: Springer.
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[116] Goré, R. 1992. Cut-free sequent and tableau systems for propositional
normal modal logics, PhD thesis, University of Cambridge.
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[128] Hermes, H. 1963. Einführung in die Mathematische Logik. Stuttgart:
Teubner.
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Epsilon term, 135
Equivalence relation, 15
Essentialism, 171
Essentially modal formula, 190
Etchemendy, xviii
Euclideaness, 155, 267, 376
Euclidean logics, 197, 232, 284, 351
EXCHECK/VALID, 97
Excluded middle law, 34, 83
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Existential assumption, 62, 65, 67
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Existential import, 6, 175
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Expanding domains, 176
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Expert systems, xvii
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Explicit systems, 186, 262
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EXT(U(D))’, 357
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Finitely generated subframes, 389
Finitely generated tree, 16, 338
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First-order modal logics, 167, 195, 333
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FOR(X), 270
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Fulfillment, 323
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Generic prover, xix
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Global assumption, 150, 275
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Global binding, 385
Global deducibility, 149, 275
Global entailment, 162
Global labels, 293, 326
Globally labelled RND, see GLRND
Global modalities, 139, 381
Global satisfiability, 152, 175
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Goal oriented systems, 26, 75
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Schütte, 82–83, 92, 257
Schema of a rule, 18
Schmidt, 23, 86, 148
Schmitt, 298
Schvarts, 185
Schwichtenberg, 100
Scope of a quantifier, 5
Scott, 151
S(D), 50
Secondary rules, 22
Segerberg, 141, 165, 192, 200, 202, 215
Segment of a branch, 16, 102
Selection functions, 434
Self-duality principle, 386
Seligman, 367, 398, 400–407, 409, 421,

424–426
Semi-decidability, 14
Separation, 405
Sequent, 4, 30, 76
Sequent calculi, see SC
Serial logics, 156, 186, 197, 283, 346
Seriality, 155, 376
Seriality’, 160
Seyfried, 255, 265
S-formula, 48, 197
Shangin, 97, 268, 298
Shimura, 226, 235, 299–300, 305–307, 310
SHOW, 48
SHØW, 49
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KD4, 194, 200, 336
KD5, 165, 185, 194, 200, 232, 336
KDB, 165, 202, 336
Kt4.3, 147, 229, 297, 304, 384
Kt4D.3, 297
Kt4D, 227–228, 252
Kt4, 147, 227–228, 252, 257, 265, 281, 336
KtD4.3, 229, 326
KtD4, 281
KtDF.DP, 147
KtDF, 147
KtDP, 147
KtD, 227–228, 281
KtT4.3, 326
Kt, 142, 227–228, 252, 257, 280, 293, 336
KH, 370, 412–413, 415
KA, 382
KHA, 382
KH@, 370
KH@A, 382
KH↓, 386, 413
KH∀, 386, 413
KtHA, 382
KtH@, 370
KtH, 370, 382, 409
L-admissible rule, 150, 162
L-(LAB)normal rule, 276
L-consistency, 12, 13, 150, 163
L-derivable rule, 150
L-frame, 156
L-inconsistency, 12
L-model, 156
L-normal rule, 24
L-normality preserving rule, 24
L-satisfiability, 9, 13, 276
L-valid rule, 24
LH, 368, 382
LH@, 368, 382
LH@A, 382
LH@∀, 385
LH@↓, 385
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LH@↓∀, 385
LH@∀A, 386
LH@↓A, 386
LM, 137, 156, 383
LT, 138, 156, 384
LTH@, 379, 384
LTH@↓, 379
LCPL, 2
LHA, 382–383
LHAD, 383
LH⇓, 388
LHΣ, 388
LH↓∀, 385
LH↓, 385
LH∀A, 386
LH∀, 385
LMA, 383
LMD, 383
LMAD, 383
LMn , 138
LQLI, 4
LQL, 4
LTHD, 384
LTH↓, 389
LTH, 379
L�n

, 138
L� , 138, 184, 196, 212
L♦n , 138
L♦, 138, 213
M, 141, 161, 187, 213, 215, 231, 235, 244,

250
M45, 231, 235
M4, 231, 235
M5, 217, 231–232, 235
MD45, 231–232, 235
MD4, 231–232, 235
MD5, 232
MD, 231, 235
MN45, 235
MN4, 235
MN5, 235
MND45, 235
MND4, 235
MNT4, 235
MT4, 231, 235
MT, 231, 235
PLTL, 268
PTL, 142

Q1-L, 218
Q1R-L, 220
Q1R, 180
Q1, 179
Q3-L, 220
Q3, 180
QLI, 67
QL, 1
QMHL, 392, 418
QML, 167, 217, 320
QPL-L, 218
QPL, 178
QS-L, 220
QS, 179
R, 141, 159–160, 188, 210–211, 213, 244,

247, 250, 280
R4, 160, 210
RD4, 160
RD, 160
RT4, 160
RT, 160
S1, 141
S2, 141, 183, 195
S3, 141, 183
S4.2, 173, 225
S4.3.1, 226
S4.3, 147, 165, 226, 235, 297, 326
S4.4, 267
S4F, 225, 298, 328
S4Grz, 184
S4R, 225, 298, 328
S4, 146, 156, 163, 165, 183, 185, 188,

194–195, 224, 231, 244, 257,
265–266, 277, 284, 336

S5, 81, 146, 163, 165, 183, 185, 188, 194,
198, 201, 210, 244, 257, 263,
266–277, 284, 293, 336

T, 146, 165, 183, 185, 194–195, 200, 231,
277, 332, 336

U, 111, 343
W, 111

A, 139, 382
B, 93
C, 164
D, 39, 50, 139, 383
D ⊕D′, 51
E , 139, 382, 417



INDEX 481

F , 153
K, 154
M, 161
M-frames, 161
M-validity, 161
N , 160
Q, 159
R, 14, 151
R+, 14, 164
R∗, 14
Rm, 15
Ri, 271
R(w), 151
RF , 151
RP , 151
Rε, 151
Ra ◦ Rb, 151
Ra ∪Rb, 151
Ra;b, 151
Ra∪b, 151
S, 142, 389
S4, 234
S5, 234
SD, 234
SD4, 234
SD5, 234
SL, 234
SM , 234
T (D), 111–112, 344
U , 142, 389
D̄, 383
W, 151
WM , 151
F-normal rule, 162
F-normality preserving rule, 163
F-satisfiability, 163
F-valid rule, 162
F-satisfiable set, 154
F � ϕ, 153
F, 151
F, w � ϕ, 153
FH , 336
M, 9, 151, 385
M, w � Γ, 152
M, w � ϕ, 152
T, 15, 151
2, 145, 155
3, 145, 155

3′, 147
3-rules, 312, 317, 321, 327
3F , 147
3P , 147, 155
4, 145, 155, 161, 267, 291
4-logics, 232
4′, 160, 376, 437
4C, 145, 155, 291, 294
4C′, 376
4F , 147
4P , 147
4A, 382
5, 145, 155, 291
5′, 376, 437
ADM(DS-L), 22
Agree, 371
Ant, 376, 437
As, 376, 437
B, 145, 155, 161, 201, 291
B-Te, 291
B-Te+ 4, 291
B′, 159, 376, 437
B + 4, 291
BF , 179, 218
BG ↓, 387
BA, 382
Back, 371, 373, 425
Barcan� , 387
Barcan@, 387
Bridge, 372, 425
C, 140
CBF , 179, 218
CON , 5, 392
ConvK@, 372
D, 145, 155, 161, 267, 291, 294
D′, 376
DA, 386
DC, 145, 155, 291, 294
DC′, 376, 437
DF , 147
DP , 147, 155
Di, 10
Do, 10
Dich, 376, 437
DualA, 382
DER(DS-L), 22
E, 8, 175
E(F), 154
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E(M), 154
E(F), 153
E(M), 152
EXPTIME, 166
EXPTIME-completeness, 380, 382, 395
F , 139, 145, 155, 328
F -labels, 271, 281
F ′, 328
F ′′, 328
FOR, 2
FUN , 392
F∃I, 12, 180
F∀E, 12, 180
G, 139, 145
GP , 147
Ga,b,c,d, 148, 305
Go, 145
Grz, 145
H, 139
H3′, 376, 437
HL′, 376, 437
HP , 147
HT , 390
ID, 11, 73, 178
Iw, 176
In, 177
Incli, 382
Incl♦, 382
Intr, 376
Intro@, 371
Irr, 376, 437
K, 140, 161, 201, 291
KA, 382
K@, 371
L, 145, 155
L′, 147
LAB(U(D)), 344
LF , 147
LI, 172, 178
LL, 11, 172, 178
LLE, 180
LNI, 178
LP , 147, 155
M , 140, 145, 155
MI, 178
MOD(F), 154
MOD(F), 151
MOD(L), 156

Mod(Γ), 153
Mod(ϕ), 153
ModF (ϕ), 154
N , 140, 161
NOM , 367
NP , 166
NP -complete problem, 167
NP -completeness, 395
Name ↓, 387
Name∃, 387
Nom, 374, 387
Nom1, 372, 425
Nom2, 372, 425
NomA, 382
P , 139, 166
P -label, 271, 281
PF , 391
PRED, 5, 392
PROP , 2
PSPACE, 166
PSPACE-complete problem, 167
PSPACE-completeness, 341, 366, 370, 395
Pos, 144
Q1, 387
Q2, 387
R, 145, 155, 328
R′, 328
R′′, 328
Ref@, 371
S-D ↓, 386
ST , 388
STx, 156
SV AR, 384
Selfdual@, 371
Sym@, 372
S1, ..., Sk �SC Sk+1, 78
T , 145, 155, 161, 236, 267, 291, 294
T ′, 376, 437
T (a, ϕ), 366
TC, 291, 294
TERM , 5
TA, 382
Tri, 376, 437
Tran@, 372
Un, 376
V , 151
V AR, 5, 392
V F (ϕ), 5
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Vw, 176
X, 126
Xi, 18
Y , 126

�4, 145, 155, 223, 282
�B, 145, 155, 223, 282
�D, 145, 155, 282
�T , 145, 155, 223, 282
�T ′, 376
�, 138
�-formula, 139, 197, 244
�Γ, 139
�n, 138
�F , 138–139
�P , 138–139
�a, 138
�i, 138
Δ, 3
Δ�, 185, 191
⇓, 387
Γ//Δ, 19
Γ < i, j >⇒ Δ, 265
Γ, 3
Γ[i], 407
Γ�, 185, 191, 197
�, 276
Π, 245, 387
Π0

2-formulae, 427
Πi, 139, 245
Πi

k, 139
Πk, 139
⇒, 4
Σ, 3, 387
Υ, 245
Υi, 139, 245
�L, 149
α, 3
α-formula, 3
β, 3
β-formula, 3
©, 142
⊥, 3
χ, 2
◦, 15
∪, 15
δ, 6
♦, 138

♦-formula, 139, 197, 244
♦Γ, 139
♦-saturated set, 375
♦n, 138
♦F , 138–139
♦P , 138–139
♦b, 138
♦i, 138
↓, 379, 384, 435
∃, 5, 384
∃I, 11
∀, 5, 384
∀E, 11
γ, 6
〈b〉, 138
↔, 2, 3
||=F , 162
| σ |, 269
|=, 9, 24
|=LAB

L , 276
|=L, 10, 156
|=F , 154, 162
¬, 2
ν, 139
ν(U(D)), 353
ν-formula, 139, 189, 197, 241, 244, 278
ν-rules, 278, 344
ν-set, 139
νF , 139
νP , 139
νi, 139
�L, 12, 144
{¬ϕ}, 322, 344
Γ, 3
{ϕ}, 3
π, 139
π-formula, 139, 189, 197, 211, 227, 244
π-rule, 301
π-set, 139
πF , 139
πP , 139
πi, 139
≺, 338
≺l, 353
ψ, 2
→, 2
σ, 269
σ � τ , 335
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⊆∀, 135
τ , 5
τ � σ, 323
�, 3
�-path, 338
�, 335
�, 9
ϕ, 2
−ϕ, 3
ϕ(x), 5
ϕ[τ1//τ2], 5
ϕ[x/τ ], 5
�, 11
�L, 11, 144
�DS−L, 11
�H−CQLI , 11
�LND−K , 275
∨, 2
∧, 2
∨Γ, 3
∧Γ, 3
{FX}, 257
{PX}, 257
a, 385
au

w, 385
ax

o , 9
coNP , 166
coNP -complete problem, 167
i-label, 271
nf , 430
w � Γ, 152
w � ϕ, 152
w-assignment, 175
x-variant, 9, 174
SUB, 433

[@I], 422
[@�], 422
[@COND], 429
[@RAA], 429
[4E ], 216
[5E ], 216
[ANTISYM ], 427
[BGR], 426, 428
[B�], 429
[B ↓ I], 425
[BE ], 216
[C-R], 427

[CCOND], 127
[CNEC], 246, 291
[CNECK ], 247
[CNECM ], 245
[CNECR], 247
[COND′′], 54
[COND′], 54
[COND], 46, 49, 62, 129
[CPOS], 246, 291
[CPOSM ], 245
[CRED], 127
[DIR], 53, 62, 129
[DE ], 216
[FUNIV ], 65
[FUNIV p], 67, 73

[FUNIV p′
], 73

[F∃E], 66

[F∃Ep′
], 73

[F ], 271
[Impossibilitation], 278
[Impossibility I], 278
[JUNIV ], 65
[LA2], 288
[LCOND], 274
[LE2], 289

[LFUNIV p′
], 282

[LF∃Ep′
], 282

[LNEC], 274, 288
[LPOS], 277, 288
[LRED], 274, 333
[LNECR], 280
[L�I], 268
[L♦E], 268
[MCOND], 127
[MOD], 199
[MRED], 127
[NAME], 424
[NAME′], 425
[NEC-G], 224
[NEC-Grz], 224
[NEC-K], 197, 247
[NEC′], 199
[NEC′

E ], 215, 254
[NEC(G)], 228
[NEC(H)], 228
[NEC/POS-2], 225
[NEC/POS-F ], 225
[NEC], 197–198, 205, 237, 243, 420
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[NECE ], 214

[NECM ], 211

[NECT ], 200

[POS-K], 247

[POS-R], 225

[POS], 203, 205, 237, 243, 420

[POSM ], 211

[P ], 271

[RED′′], 54

[RED′], 54

[RED], 25, 46, 49, 101, 103, 129, 199, 243

[SC-1M ], 216

[SEP ], 134, 246, 294

[SUB′′], 136

[SUB′], 135

[SUB], 128, 245, 290

[TR], 34, 37

[UNIV ], 59, 62, 122, 219

[UNIV p], 66–68

[UNIV p′
], 69–70

[UNIV p�], 67–68, 73

[�], 424

[�nCOND], 193

[�nRED], 193, 202

[β], 104, 134, 346

[⊥], 240, 243

[⊥]F , 209, 237, 240

[⊥]W , 240

[∃E], 62, 63

[∃Ep], 58, 69

[∃Ep′
], 70

[∀E], 100

[¬E], 33, 40, 100

[¬I], 34

[νI], 274

[ψ], 40

[→ E], 100

[→ I], 33, 36, 40

[ε], 148

[∨E], 46

[∨I], 34

[∧E], 100

[a; b], 148

[a ∪ b], 148

[a], 138

[i], 271

[D], 51

(1R-A), 440
(1R′′), 329
(2Exp-A), 440
(2R-A), 440
(2R′′), 329
(3Exp-A), 440
(3FE), 264
(3FEK), 305
(3FF ′), 319
(3FF ), 317, 325, 359
(3FP ′), 319
(3FP ), 317, 325, 359
(3PE), 264
(3PEK), 305
(3PF ′), 319
(3PF ), 317, 325, 359
(3PP ′), 319
(3PP ), 317, 325, 359
(3R-A), 440
(3RExp-A′′), 440
(3RExp-A′), 440
(3RExp-A), 440
(4-2), 187
(4), 161, 187
(4R-A), 442
(4RExp-A), 442
(5-2), 187
(5), 161, 187, 216, 287
(5′), 216
(A), 34
(AMON), 394
(AX), 25, 77, 400
(AS), 35
(Advancement), 277
(Antisym), 427
(B), 187
(B-2), 187
(B-Te), 142
(BBridge), 417, 429, 430
(BF ), 218
(BG), 372–373, 380, 386, 421
(BGR), 428, 439
(BGE), 383
(BId), 417
(BLF ), 305
(BLP ), 305
(BNom′), 425
(BNom), 416, 425, 430
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(BNom1), 417, 425
(BNom2), 417
(BNom1), 429
(BNom1 ⇒), 428
(BNom2), 429,
(BNom2 ⇒), 428
(BR), 330
(BRef), 417, 429, 433
(BSym), 417
(B@I), 429
(B@E), 417, 429
(B¬@E), 417
(B�E), 417, 421, 424, 429, 433
(B ⇒↓), 428
(B ⇒ ∀), 428
(B⊥I), 429, 434
(B ↓ E), 430
(B ↓⇒), 428
(B∀E), 430
(B∀I), 430
(B∀ ⇒), 428
(B¬EE), 417
(B → E), 429, 433
(B ∧ E), 429, 433
(B ∧ I), 429, 433
(BEE), 417
(Bα), 417
(Bβ), 417
(B⊥), 417
(B♦E), 417
(B ↓ E), 417
(B¬), 417
(B¬�E), 417
(B¬♦E), 417
(B¬ ↓ E), 417
(B¬¬), 417
(C), 126, 231
(C-3), 187, 231
(CNN), 126, 129
(CSL), 303
(Cut-ND), 37
(Cut), 25, 77, 79, 402
(Cxt), 284
(C@), 435, 437
(C@4), 436
(C@Bridge), 437
(C@D), 436
(C@NN), 437

(C@Nom), 437
(C@Param), 435
(C@Ref), 435, 437
(C@Sym), 435, 437
(C@Sym′), 435
(C@T ), 436
(C@W ), 437
(C@α), 437
(C@β), 437
(C@π), 437
(C@ν), 437
(C@¬), 437
(C@∧), 435
(C@¬∧), 435
(C@�), 435
(C@¬�), 435
(C@ ↓), 436
(CF∃E), 135
(CF∃I), 135
(CF∀E), 135
(CαE), 126
(CαI), 126
(Cα), 129
(CβE), 126
(CβI), 126
(Cβ), 129
(C∃E), 135
(C∃I), 135
(C∀E), 135
(D�E), 223
(D-2), 187
(D), 187, 192, 197, 223
(D4), 232
(D5), 232
(DG⇒), 410
(DH ⇒), 410
(DLF ), 302
(DLFK), 303
(DLP ), 302
(D ⇒ G), 410
(D ⇒ H), 410
(D ⇒ ∧1), 409
(D ⇒ ∧2), 409
(D ⇒), 186
(D ⇒→), 409
(E′), 213
(E), 187
(Exp-A), 251, 291



INDEX 487

(Exp-B-T ), 252
(F ′′), 329
(F ′), 329
(FE), 258, 264
(F ⇒), 266
(F∃E), 65–66, 105
(F∃Ep), 73
(F∃I), 65, 220
(F∃Ip), 73
(F∃), 12
(F∀E), 65, 105, 220
(F∀Ep), 73
(F∀), 12
(F¬∃E), 105
(F¬∀E), 105
(G = E), 181
(G-Enter), 258
(G-Exit), 258
(G), 224
(G = E), 220
(G = E)′, 220
(GL3-Te), 327
(GL3′-Te), 327
(GL3′-Te4), 327
(GL3′), 327
(GL3′.4), 327
(GL3), 327
(GLExp-4), 294
(GLExp-5), 294
(GLExp-A), 294–295
(GLExp-B-Te), 294
(GLExp-B), 294
(GLExp-B4-Te), 294
(GLExp-B4), 294
(GLExp-D), 294
(GLExp-K), 294
(GLRes-A), 294
(GLRes′-A), 295
(GLRes′′-A), 295
(GLRes), 294
(GLW ), 294
(GLα), 294
(GLβ), 294
(GL¬¬), 294
(GLπi), 294
(G⇒), 266
(G∀E), 180, 220
(G∀I), 180, 220

(Gj ⇒), 266
(Gen), 387
(Grz), 224
(H-Enter), 258
(H-Exit), 258
(HR-UI), 408
(HR), 426
(HRND-4C′), 443
(HRND-CR), 443
(HS), 25
(H� ⇒), 401, 425
(H� ⇒′), 408
(H ⇒), 266
(H ⇒ �), 401, 425
(H ⇒ ♦′), 408
(H ⇒ ♦), 401, 425
(H ⇒ ∃), 405
(H♦ ⇒), 401, 425
(H∃ ⇒), 405
(Hi ⇒), 266
(Id), 415–416
(ID), 419–420
(ID1), 74
(ID2), 74
(IS-D), 414
(IRef), 422
(I�E), 425
(I�I), 422
(I¬�E), 428
(I♦E), 422
(I♦E′), 428
(I¬♦E), 425
(I⊥@), 422
(I@I), 422
(I@E), 422
(I@@E), 422
(I � @E), 422
(J∀E), 65
(K-3), 317
(KF ), 266
(KG), 266
(KH), 266
(KP ), 266
(L-Id), 412
(L4′), 283
(L4), 278, 282
(L4π), 284
(L42), 288
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(L5), 284
(L5.4), 278
(L5�), 278
(L52), 288
(LA2), 288
(LB), 278, 282
(LB4), 278
(LB4νP ), 325
(LBνP ), 325
(LB4νi), 281
(LBνi), 281
(LB2), 288
(LD′), 283, 346
(LD), 278, 282, 341, 346
(LD2), 288
(LE), 288
(LExp-A), 291
(LI), 219
(LL), 73
(LL3-Te), 327
(LL3′-Te), 327
(LL3′-Te4), 327
(LL3′), 327
(LL3′.4), 327
(LL3), 327
(LLE), 180
(LLExp-A), 291–292
(LLRes-A), 291–292
(LLRes), 290
(LLW ), 290
(LL¬¬), 290
(LLα), 290
(LLβ), 290
(LLπi), 291
(LM), 285
(LM4), 285
(LM5), 285, 287
(LMB), 285, 287
(LMD), 285
(LMD4), 285
(LMD5), 285
(LNI), 219
(LR), 418
(LRes-A), 291
(LT ), 278, 282, 341
(L�E), 268
(LαE), 274
(LαI), 274

(LβE), 274
(LβI), 274
(L⊥E), 274
(L⊥I), 274
(L♦I), 268
(L¬¬), 274
(L∃Ep

S), 59
(LνE), 274, 287
(LπE), 274, 287, 289, 333, 339
(LπE′), 279
(LπG), 282
(LπGrz), 282
(LπI), 274
(Lab), 412
(M), 187, 211
(MLF ), 303
(MON), 394
(MP ), 11, 19, 25, 55, 94, 371
(N), 187, 231
(NAME′), 373–374, 383, 409
(NAME), 372–373, 386, 399, 423, 425
(NAMELITE), 374
(NCR), 417
(NN), 82, 84
(N1), 401, 425
(Nom), 421
(PASTE′), 374
(PASTE), 373
(PB), 25, 93–94, 101, 103, 121
(PE), 258, 264
(PF ), 417
(P ⇒), 266
(R-Cut), 92, 133
(R-UI), 303
(R′), 329
(R), 225
(R5), 200
(RB), 201
(RC), 140
(RE), 140, 144, 217, 289
(RG), 140, 144, 161, 187, 194, 199, 251, 275,

280, 371, 373, 380
(RG@), 371
(RG ↓), 387
(RGM ), 194
(RG�), 194
(RG♦), 194
(RGA), 383
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(RM), 140, 144, 217, 251, 280, 286
(RPF ), 391
(RR), 140, 192, 199, 251
(Reit′′), 199
(Reit′), 199
(Reit), 196, 198, 204
(Res-A), 251, 291
(Res-B-T ), 252
(Res-B), 252
(Res′), 129
(Res), 25, 85, 94, 126
(Res1), 88
(S-Id′′), 413
(S-Id′), 413–414
(S-Id), 412
(S-K), 192
(S-NAME), 401, 403, 425
(S), 400
(S4.2), 225
(S4.3K), 304
(S4F ), 225
(SC-1), 215
(SC-2′), 226
(SC-2), 215
(SC-3), 215
(SC-F ′), 225
(SC-R′), 225
(SC-R), 225
(SG), 234
(SLL), 310
(Start), 409
(SUB@), 371
(T ), 192, 197, 199, 224, 237
(TERM), 401, 403, 425
(TNom), 415
(T@), 413
(T¬@), 413
(T�E′), 414
(T�E), 413
(Tα), 413
(Tβ), 413
(T⊥1), 413
(T⊥2), 413
(T♦E′), 414
(T♦E), 413
(T¬�E′), 414
(T¬�E), 413
(T¬♦E′), 414

(T¬♦E), 413
(T¬¬), 413
(T¬), 414
(T ↓), 413
(T∀), 413
(T¬ ↓), 413
(T¬∀), 413
(TrCo), 304
(Transpose-F ), 416
(Transpose-P ), 416
(W ), 25, 126, 129, 131
(W ⇒), 77, 79
(WS), 35
(@AX), 406
(@Bridge), 407
(@CR), 419
(@DD), 419
(@GGA), 420
(@GR), 419
(@Nom), 407
(@Ref), 407
(@Res), 435
(@Sym), 407
(@L1), 408
(@L2), 408
(@;E), 420
(@ =), 419
(@¬ =), 419
(@ ∪ E), 420
(@ ⇒), 407
(@ ⇒′), 403
(@I⇒), 401
(@E⇒), 401
(@C ⇒), 406
(@ ⇒ C), 406
(@¬ ⇒), 406
(@∧ ⇒), 406
(@∨ ⇒), 406
(@∀E), 419
(@¬∀E), 419
(@∃E), 419
(@¬∃E), 419
(@ →⇒), 406
(@ ⇒ ¬), 406
(@ ⇒ ∧), 406
(@ ⇒ ∨), 406
(@ ⇒→), 406
(@ ⇒ �), 407
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(@ ⇒ ♦), 407
(@ ⇒ ♦′), 408
(@� ⇒), 407
(@� ⇒′), 408
(@♦ ⇒), 407
(�E), 186, 223, 236
(�E�♦), 200
(�E�), 200
(�E♦), 200, 202
(�EG), 191
(�ES), 189, 192
(�IS), 189
(� ⇒), 185, 186
(� ⇒′), 186
(�n ∧ E), 192
(�n ∧ ES), 193
(�n ∧ I), 192
(�n ∧ IS), 193
(�n → ES), 195
(⇒ F ), 266
(⇒ F i), 266
(⇒ G), 266
(⇒ H), 266
(⇒ P ), 266
(⇒ P j), 266
(⇒W ), 79
(⇒ @), 407
(⇒@′), 403
(⇒@I), 401
(⇒@E), 401
(⇒ �′), 184, 233
(⇒ �), 184, 197, 233
(⇒ �3), 226
(⇒ �4), 185
(⇒ �F ), 185
(⇒ ♦), 185
(⇒ ♦′), 186
(⇒ ♦), 186
(⇒ νi), 227
(⇒ ∃), 77
(⇒ ∃′), 80
(⇒ ∀), 77
(⇒ ¬), 77
(⇒ ∨), 77
(⇒ ∧), 77
(⇒ E), 404
(⇒W ), 77
(⇒↓), 404

(⇒→), 77
(αE), 46
(αH), 82
(αI), 46
(αS), 82
(α), 84
(βE), 46, 93
(βH), 82
(βI), 46
(βI ′), 126
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